
eBus
Programmer’s
Manual

Version: 7.4.0

Released: September 5, 2024  

eBus Programmer’s Manual

Copyright © 2024. Charles W. Rapp

All Rights Reserved. 

Page of 2 212

Welcome to eBus!

Welcome to eBus! 9

Overview 10

Merrily, We Role Along 11

Publisher 12

Step 1: Implementing a publisher 12

Step 2: Opening and advertising a publisher feed 14

Step 3: When to start publishing 16

Step 4: Publishing 18

Step 5: When to stop publishing 20

Step 6: Unadvertising the publisher 22

Step 7: Complete publisher code 24

Subscriber 26

Step 1: Implementing a subscriber 26

Step 2: Subscribing to a notification message and subject 28

Step 3: Handling a publisher feed status 30

Step 4: Handling notifications 32

Step 5: Unsubscribing 34

Step 6: Complete subscriber code 36

Replier 38

Step 1: Implementing a replier 38

Step 2: Advertising a replier 40

Step 3: Handling a request 42

Step 4: Canceling a request 44

Step 5: Replying to a request 46

Step 6: Unadvertising a replier 48

Page of 3 212

eBus Programmer’s Manual

Step 7: Complete replier code 50

Requestor 54

Step 1: Implementing a requestor 54

Step 2: Opening a request 56

Step 3: Handling a replier’s feed status 58

Step 4: Making a request 60

Step 5: Receiving replies 62

Step 6: Canceling a request 64

Step 7: Complete requestor code 66

Using Lambda Expression Callbacks 69

ERequestor Callbacks 71

Hybrid Object Pattern 72

Get the Message 74

Defining an eBus Message 75

Step 0: eBus supported message field types 75

Step 1: Message Class 76

Step 2: Message Annotation 77

Step 3: Static Message builder() method 78

Step 4: Builder Inner Class 79

Step 4a: Builder Inner Class Constructor 80

Step 4b: Builder Inner Class Setter Methods 81

Step 4c: Builder Inner Class Method Overrides 82

Step 5: Message Object Constructor 83

Step 6: Message field type definition 84

Step 7: Complete Message Class 85

Page of 4 212

Welcome to eBus!

Defining an Extendable Field 87

Arrays and List Fields 89

Local eBus Messages 90

Message Field Annotations 91

String: @EStringInfo(charset = "charset name", lineCount = n,
maximumAllowedSize = n) 91

Array, EFieldList, EMessageList, BigInteger: 91

@EArrayInfo(maximumAllowedSize = n) 91

All: @FieldDisplayIndex(index = n) 91

Compiling Messages 91

Key to eBus 94

Feed me, Seymour! 96

Multi-Subject Feeds 96

Pattern Feed 100

Ordered Pattern 100

Unordered Pattern 104

Defining Parameter Maps 106

Subscribing to an Event Pattern Feed 107

Feed Interfaces 109

Don't Know Much About History 110

IEHistoricPublisher 111

Step 1: Implementing an historic publisher 111

Step 2: Implementing a message store 113

Step 3: Opening, starting, and advertising an historic publish feed 115

Step 4: Publishing 117

Page of 5 212

eBus Programmer’s Manual

Step 5: Unadvertising the publisher 119

Step 6: Complete historic publisher code 121

IEHistoricSubscriber 123

Step 1: Implementing an historic subscriber 123

Step 2: Opening, starting and subscribing historic feed 125

Step 3: Handling publisher feed status 127

Step 4: Handling notifications 129

Step 5: Handling historic feed completion 131

Step 6: Retracting historic feed. 133

Step 7: Complete historic subscriber code 135

Message Store 137

In-memory Message Store 137

SQL Message Store 137

Persisting Messages 139

Connecting Up 140

Step 1: Opening an eBus service 141

Step 2: Opening an eBus client connection 144

Step 3: eBus network configuration 148

Step 4: Address filter 150

Step 5: eBus configuration file 151

Step 6: Building Servers and Connections. 153

Step 7: Connection notification 155

Pausing Connections 157

Multicast Connections 158

Multicast JSON Configuration 158

Page of 6 212

Welcome to eBus!

Building eBus Multicast Connections 160

Monitoring eBus Connections 161

Dispatcher 162

eBus Clients Are Single-Threaded 162

Active and Hybrid Objects 163

Dispatcher now comes in four (!) flavors 163

Combining eBus Dispatcher and non-eBus Threads 163

Special Dispatchers 164

Monitoring Dispatchers 165

Dispatcher Configuration 165

Programmatic Dispatcher Configuration 168

Gentlemen, start your objects 170

Pinning Application Objects to a Dispatcher 173

Registration Gotchas 173

State of the Union: eBus and SMC 174

Calculator State Machine 175

Integrating the FSM into Calculator 177

Integrating the FSM into eBus 178

Going Mobile 181

Time, Gentlemen! 183

Creating an EScheduledExecutor 184

Programmatic eBus Scheduler Creation 185

JSON eBus Scheduler Creation 185

Keeping an Eye on Things 187

Page of 7 212

eBus Programmer’s Manual

Application Monitoring 187

Instrumenting EObjects 187

Monitoring eBus applications 189

Appendices 193

Appendix A: Binary message layout 193

Appendix B: eBus connection protocol 199

Appendix C: eBus protocol stack 203

Appendix D: eBus Network Programming 205

Defining Selectors 206

Dynamic Selector Definition 207

Different Selectors for Different Channels 207

Selector Thread Affinity 207

AsyncChannel Types 208

Appendix E: Configuring Thread Affinity 209

Glossary 211

Index 211

Definition 211

Condition 211

Dispatcher 211

EClient 211

Feed Scope 211

Message Key 212

Notification 212

Reply 212

Request 212

Page of 8 212

Welcome to eBus!

Welcome to eBus!
What is eBus?:

A messaging middleware.
A message router between objects …

in the same application,
in different applications on the same host, and
in different applications on different hosts.

eBus messages are user-defined Java classes.
eBus routes messages based on type+topic (type is the message class and topic is the message
subject), providing stronger type checking than topic-based routing alone.
eBus supports publish/subscribe messaging.
eBus supports request/reply messaging.
eBus is not a separate message routing process - it is your process.

Overview shows how application objects interact with the eBus API to send and receive user-defined
messages. An object may implement one or more eBus roles: publisher, subscriber, requestor, and
replier.

eBus makes it easy to develop a distributed, message-based application and this manual shows just how
simple it is.

eBus (as of v. 5.0.0) is a Maven project deployed to Maven Central. All further releases will be available
through Maven Central and may be accessed using the Maven dependency:

<dependency>
 <groupId>net.sf.ebus</groupId>
 <artifactId>core</artifactId>
 <version>7.4.0</version>
</dependency>

Gradle (long)

implementation group: 'net.sf.ebus', name: 'core', version: '7.4.0'

Gradle (short)

implementation 'net.sf.ebus:core:7.4.0'

Important! eBus v. 5.2.0 has significantly changed message class definition to better support message
serialization/de-serialization. Please see the section Get the Message for detailed explanation regarding
this change.

More Important! eBus v. 6.0.0 now requires Java 11. Previous versions are based on Java 1.8. 

Page of 9 212

https://mvnrepository.com/repos/central

eBus Programmer’s Manual

Overview

Application classes implement eBus roles and interact with eBus feeds. The publish/subscribe roles are
EPublisher and ESubscriber and their respective feeds are IEPublishFeed and
IESubscribeFeed. The request/reply roles are ERequestor and EReplier using IERequestFeed
and IEReplyFeed.

The idea is that a role-playing object interacts with its feed to send and/or receive messages. A publisher
only sends messages. A subscriber only receives messages. But a requestor and a replier both send and
receive messages.
The next section, “Merrily, We Role Along”, shows how to implement eBus roles. Not much to it: you are
simply implementing a Java interface. This section also shows how application classes implementing
eBus roles interact with eBus feeds.
“Get the Message” section demonstrates how to define a notification, request, and reply message simply
be creating a Java class and attaching the necessary annotations.

Section “Feed me, Seymour!” takes the user beyond simple message feed types to complex feeds that
simplify your application.

Section “Connecting Up” describes how eBus applications connect. eBus handles the connection process
and message transmission for the application. These connections are invisible to the application code,
allowing remote application objects to communicate as if the were in the same JVM.

“Dispatcher” explains how eBus passes messages to application objects while the section “Gentlemen,
start your objects” shows how to start up application objects in a thread-safe manner.

Go here to download the latest eBus, if you haven’t already. If you are using maven to build you project,
then you can access eBus from a public repository (see above).

Go here to see the eBus API documentation. 

Page of 10 212

http://www.sourceforge.net/projects/ebus/
http://ebus.sourceforge.net/eBus/index.html

Merrily, We Role Along

Merrily, We Role Along
An application class interacts with eBus by implementing one or more interfaces:
net.sf.eBus.client.EPublisher, ESubscriber, ERequestor, and EReplier. Each interface
works with a specific feed: net.sf.eBus.client.IEPublishFeed, IESubscribeFeed,
IERequestFeed, and IEReplyFeed.

The publisher role is demonstrated first.

Please note that an application class may implement more than one eBus interface, even all four. That
application class’ instance may interact with multiple feeds. A publisher object may publish multiple
notification feeds and a subscriber subscribe to multiple feeds. In short, an application class may be very
simple - implements one interface and opens one feed, or very complex - implements all four interfaces
and opens multiple feeds for each interface. It up to the application developer to decide the complexity
level.

eBus release 6.1.0 deprecates the feed static open(…) method in favor a static Builder class. A
Builder instance is accessed using the feed static builder() method. A feed instance is created via
the Builder.build() method. This change does not apply to multi pattern feeds where the static
open() method is still used.

Page of 11 212

eBus Programmer’s Manual

Publisher
Step 1: Implementing a publisher
An application can publish messages by first implementing the net.sf.eBus.client.EPublisher
interface.

Note: Previous code is not shown in subsequent steps. The complete code is shown in the final step. 

Page of 12 212

Merrily, We Role Along

import net.sf.eBus.client.EFeedState;
import net.sf.eBus.client.EPublisher;
import net.sf.eBus.client.IEPublishFeed;

public class CatalogPublisher
 implements EPublisher
{

 // EPublisher interface has one method.

 @Override public void publishStatus(final EFeedState feedState,
 final IEPublisherFeed feed) {
 See steps 3 and 5.

 }

}

Page of 13 212

eBus Programmer’s Manual

Step 2: Opening and advertising a publisher feed
Applications communicate with eBus using feeds. So the first step is to open a feed, associating it with
your EPublisher instance:
pubFeed = (net.sf.eBus.client.EPublishFeed.builder()).target(publisher)

 .messageKey(key)

 .scope(scope)

 .build();

where:
publisher is a non-null instance implementing EPublisher. Since the publisher object usually
opens the publish feed, this is passed in as the publisher argument.

key is a notification message key (meaning that the key's message class is a
net.sf.eBus.messages.ENotificationMessage subclass).

scope is the feed scope.

(Store away the open EPublishFeed since this object is used to publish notification messages in step 5
and to retract the advertisement in step 6.)

The second step is to advertise your EPublisher to subscribers:
pubFeed.advertise()

Note: Do not publish notifications until eBus tells you to start publishing via the publishStatus callback
(step 3).

Updating the Publisher Feed State
When a publisher calls EPublishFeed.updateFeedState() depends on the feed's stability. If the
publisher is autonomously generating notification messages, then the feed is stable and the publisher
should call pubFeed.updateFeedState(EFeedState.UP)immediately after advertising. But if the
feed state is dependent on external factors, then the publisher should wait until these factors are
determined.
EPublishFeed.updateFeedState(EFeedState.UP) must be called some time prior to notification
publishing. This call may be done any time after advertising and before publishing the first message. If a
notification feed is up and the remaining subscriber to that feed unsubscribes, then publishStatus is
called with EFeedState.DOWN. The publisher must then stop posting messages until the feed state
comes back up.
It is possible to inform subscribers that the feed is down by unadvertising the feed. When the feed is back
up, the feed advertisement is put back in place. The reason for separating
EPublishFeed.advertise() and EPublishFeed.updateFeedState(EFeedState) is due to the
cost of removing and restoring an advertisement. It is faster to leave the advertisement in place and
simply inform subscribers that the feed is down until further notice.
In this example the publisher autonomously generates notification messages. So it sets its publish feed
state to up immediately after advertising.

Page of 14 212

http://localhost/~charlesr/glossary.html#MessageKey
http://localhost/~charlesr/glossary.html#FeedScope

Merrily, We Role Along

import net.sf.eBus.client.EFeed.FeedScope;
import net.sf.eBus.client.EFeedState;
import net.sf.eBus.client.EPublisher;
import net.sf.eBus.client.EPublishFeed;
import net.sf.eBus.messages.EMessageKey;

public class CatalogPublisher
 implements EPublisher
{

 // Publishes this notification message class/subject key.

 private final EMessageKey mKey;

 // Published messages remain within this scope.

 private final FeedScope mScope;

 // Advertise and publish on this feed.

 private EPublishFeed mFeed;

 public CatalogPublisher(final String subject, final FeedScope scope) {
 mKey = new EMessageKey(CatalogUpdate.class, subject);
 mScope = scope;

 // Set the feed to null to denote that the feed is not yet in place.

 mFeed = null;
 }

 @Override public void startup() {
 try {
 mFeed = (EPublishFeed.builder().target(this)
 .messageKey(mKey)
 .scope(mScope)

 .build();

 mFeed.advertise();

 // Inform the world that this publisher's feed state is up.

 mFeed.updateFeedState(EFeedState.UP);

 } catch(IllegalArgumentException argex) {
 // Advertisement failed. Place recovery code here.

 }

 }

 @Override public void shutdown() {
 Shown in step 6.

 }

}

Page of 15 212

eBus Programmer’s Manual

Step 3: When to start publishing

eBus tells a publisher when to start publishing its notification messages by calling the publishStatus
method with the feedState parameter set to EFeedState.UP. eBus makes this call when there is at
least one in-scope subscriber to the notification message key.

Page of 16 212

Merrily, We Role Along

public class CatalogPublisher
 implements EPublisher
{

 @Override public void publishStatus(final EFeedState feedState,
 final IEPublishFeed feed) {
 EFeedState publishState;

 // Are we starting a feed?

 if (feedState == EFeedState.UP) {
 // Yes. Start publishing notifications on the feed.

 startPublishing();

 } else {
 // We are stopping the feed.

 More in step 5.

 }

 }

 public void updateProduct(final String productName,
 final Money price,
 final int stockQty) {
 Shown in step 4.

 }

}  

Page of 17 212

eBus Programmer’s Manual

Step 4: Publishing
Publishing a notification message is easy:

1. Instantiate the notification message.  
Note: messages are immutable. Once instantiated the message cannot be modified.

2. Pass the notification message to EPublishFeed.publish(ENotification message). 

Page of 18 212

Merrily, We Role Along

public class CatalogPublisher
 implements EPublisher
{

 public void updateProduct(final String productName,
 final Money price,
 final int stockQty) {
 if (mFeed != null && mFeed.isFeedUp()) {
 mFeed.publish(

 (CatalogUpdate.builder()).subject(mKey.subject())

 .timestamp(Instant.now())

 .productName(productName)

 .price(price)

 .stockQty(stockQty)

 .build());

 }

 }

}  

Page of 19 212

eBus Programmer’s Manual

Step 5: When to stop publishing
When there are no more subscribers for the published notification message key, eBus call
publishStatus again with an EFeedState.DOWN feed state. At this point, the publisher must stop
publishing notification messages on that feed. Any further attempts to publish notifications on the feed will
result in a thrown IllegalStateException. 

Page of 20 212

Merrily, We Role Along

public class CatalogPublisher
 implements EPublisher
{

 @Override public void publishStatus(final EFeedState feedState,
 final IEPublishFeed feed) {
 // The feed is down until proven otherwise.

 EFeedState publishState;

 // Are we starting a feed? Is the advertisement still in place?

 if (feedState == EFeedState.UP) {
 See step 3.

 } else if (mFeeds.containsKey(key)) {
 // This is a request to stop an existing feed.

 stopPublishing();

 }

 }

}  

Page of 21 212

eBus Programmer’s Manual

Step 6: Unadvertising the publisher
A publisher has three ways to let eBus know that it will no longer be publishing messages on the feed:

1. EPublishFeed.updateFeedState(EFeedState.DOWN): As previously mentioned, this tells
eBus that the publisher is temporarily unable to publish notifications on this feed but plans to publish
on the feed as soon as the problem is cleared.

2. EPublishFeed.unadvertise(): The publisher is retracting the announcement that it can publish
notifications on the feed. The publisher is able to put the advertisement back in place on the feed in
the future. This scenario could be used where the application is able to enable, disable objects. On
enablement, the object advertises the feed. On disablement, the object un-advertises.

3. EPublishFeed.close(): The publisher is permanently closing the feed. This also retracts an in
place advertisement. Once closed, the feed cannot be used again. If the object intends to use the
feed in the future, then a new feed must be opened and that one used.

Note: eBus maintains a weak reference back to application objects using eBus. When eBus detects such
an object’s finalization, eBus automatically retracts that object’s advertisements, subscriptions, and active
requests. That said, it is preferable that application objects close their open feeds themselves rather than
depending on the eBus automatic retraction. 

Page of 22 212

Merrily, We Role Along

public class CatalogPublisher
 implements EPublisher
{

 // Retract the notification feed.

 @Override public void shutdown() {
 if (mFeed != null) {
 // unadvertise() unnecessary since close() retracts an in-place

 // advertisement.

 mFeed.close();

 mFeed = null;
 }

 }

}  

Page of 23 212

eBus Programmer’s Manual

Step 7: Complete publisher code
import net.sf.eBus.client.EFeed.FeedScope;
import net.sf.eBus.client.EFeedState;
import net.sf.eBus.client.EPublisher;
import net.sf.eBus.client.EPublishFeed;
import net.sf.eBus.client.IEPublishFeed;
import net.sf.eBus.messages.EMessageKey;
import net.sf.eBus.messages.ENotificationMessage;

public class CatalogPublisher
 implements EPublisher
{

 // Publishes this notification message class/subject key.

 private final EMessageKey mKey;

 // Published messages remain within this scope.

 private final FeedScope mScope;

 // Advertise and publish on this feed.

 private EPublishFeed mFeed;

 public CatalogPublisher(final String subject, final FeedScope scope) {
 mKey = new EMessageKey(CatalogUpdate.class, subject);
 mScope = scope;

 mFeed = null;
 }

 @Override public void startup() {
 try {
 mFeed = (EPublishFeed.builder().target(this)
 .messageKey(mKey)
 .scope(mScope)

 .build();

 mFeed.advertise();

 // Inform the world that this publisher's feed state is up.

 mFeed.updateFeedState(EFeedState.UP);

 } catch (IllegalArgumentException argex) {
 // Advertisement failed. Place recovery code here.

 }

 }

 @Override public void publishStatus(final EFeedState feedState,
 final IEPublishFeed feed) {
 EFeedState publishState;

 // Are we starting a feed?

 if (feedState == EFeedState.UP) {

Page of 24 212

Merrily, We Role Along

 // Yes. Start publishing notifications on the feed.

 publishState = startPublishing();

 } else {
 // We are stopping the feed.

 stopPublishing();

 }

 }

 public void updateProduct(final String productName,
 final Money price,
 final int stockQty) {
 if (mFeed != null && mFeed.isFeedUp()) {
 mFeed.publish(

 (CatalogUpdate.builder()).subject(mKey.subject())

 .timestamp(Instant.now())

 .productName(productName)

 .price(price)

 .stockQty(stockQty)

 .build());

 }

 }

 // Retract the notification feed.

 @Override public void shutdown() {
 if (mFeed != null) {
 // unadvertise() unnecessary since close() retracts an in-place

 // advertisement.

 mFeed.close();

 mFeed = null;
 }

 }

 // Starts the notification feed when the feed state is up.

 // Return EFeedState.UP if the notification is successfully started;

 // EFeedState.DOWN if the feed fails to start.

 private EFeedState startPublishing() {
 Application-specific code not shown.

 }

 // Stops the notification feed if up.

 private void stopPublishing() {
 Application-specific code not shown.

 }

}  

Page of 25 212

eBus Programmer’s Manual

Subscriber
Step 1: Implementing a subscriber
Every application class receiving notification messages must implement
net.sf.eBus.client.ESubscriber interface.

Go here to learn how eBus calls back to clients.

Note: previous code is not show in subsequent steps. Go here to see the complete code. 

Page of 26 212

Merrily, We Role Along

import net.sf.eBus.client.EFeedState;
import net.sf.eBus.client.IESubscribeFeed;
import net.sf.eBus.client.ESubscriber;
import net.sf.eBus.messages.ENotificationMessage;

public class CatalogSubscriber
 implements ESubscriber
{

 // ESubscriber interface has two methods.

 @Override public void feedStatus(final EFeedState feedState,
 final IESubscribeFeed feed) {
 See step 3.

 }

 @Override public void notify(final ENotificationMessage msg,
 final IESubscribeFeed feed) {
 See step 4.

 }

}  

Page of 27 212

eBus Programmer’s Manual

Step 2: Subscribing to a notification message and subject
Subscribing tells eBus which messages and subjects a subscriber wants to receive. This is done in two
steps.

The first step is opening the subscription feed:

subFeed = (net.sf.eBus.client.I.builder()).target(subscriber)
 .messageKey(key)
 .scope(scope)
 .condition(condition)
 .build();

where:

subscriber is a non-null instance implementing ESubscriber. Since the subscriber object
usually opens the feed itself, this is passed in as the subscriber argument.

key is the message key containing the subscribed notification message class and message subject.

scope is the feed scope.

condition is the optional condition used to restrict delivered notification messages to those which
satisfy the condition. This argument may be null.

The second step puts the subscription in place:

subFeed.subscribe();  

Page of 28 212

Merrily, We Role Along

import net.sf.eBus.client.EFeed.FeedScope;
import net.sf.eBus.client.EFeedState;
import net.sf.eBus.client.ESubscribeFeed;
import net.sf.eBus.client.ESubscriber;
import net.sf.eBus.client.IESubscribeFeed;
import net.sf.eBus.messages.EMessageKey;
import net.sf.eBus.messages.ENotificationMessage;

public class CatalogSubscriber
 implements ESubscriber {
 // Subscribe to this notification message class/subject key and feed scope.

 private final EMessageKey mKey;
 private final FeedScope mScope;

 // Store the feed here so it can be used to unsubscribe.

 private ESubscribeFeed mFeed;

 public CatalogSubscriber(final String subject, final FeedScope scope) {
 mKey = new EMessageKey(CatalogUpdate.class, subject);
 mScope = scope;

 mFeed = null;
 }

 @Override public void startup() {
 try {
 // This subscription has no associated ECondition; defaults to null.

 mFeed = (ESubscribeFeed.builder()).target(this)
 .messageKey(mKey)

 .scope(mScope)

 .build();

 mFeed.subscribe();

 } catch(IllegalArgumentException argex) {
 // Feed open failed. Place recovery code here.

 }

 }

 @Override public void feedStatus(final EFeedState feedState,
 final IESubscribeFeed feed) {
 See step 3.

 }

 @Override public void notify(final ENotificationMessage msg,
 final IESubscribeFeed feed) {
 See step 4.

 }

 @Override public void shutdown() {
 See step 5.

 }

}  

Page of 29 212

eBus Programmer’s Manual

Step 3: Handling a publisher feed status
eBus informs a subscriber whether there are any publishers actively publishing messages to the
subscribed notification message and subject. The feed state is set to EFeedState.UP if there is at least
one publisher in scope able to publish the message. At this point you may expect notification messages to
be delivered to your notify method (although there is no guarantee that the publisher has anything to
send).

If there are no publishers able to provide the requested notification message key, eBus will call the feed
status method with a EFeedState.DOWN feed state. At this point you will not receive any calls to your
notify method for the specified feed.1

 If a subscriber is subscribed to multiple feeds, the fact that one of the feeds is down does not preclude 1

the subscriber from receiving notifications for the other feeds.

Page of 30 212

Merrily, We Role Along

public class CatalogSubscriber
 implements ESubscriber
{

 @Override public void feedStatus(final EFeedState feedState,
 final IESubscribeFeed feed) {
 // What is the publisher feed state?

 if (feedState == EFeedState.DOWN) {
 // Down. There are no publishers. Expect no notifications until a

 // publisher is found. Put error recovery code here.

 } else {
 // Up. There is at least one publisher. Expect to receive notifications.

 }

 }

}  

Page of 31 212

eBus Programmer’s Manual

Step 4: Handling notifications
When there is at least one publisher with a EFeedState.UP publish feed status, you may expect
notification messages to be delivered to your notify method (although there is no guarantee that the
publisher has anything to send). 

Page of 32 212

Merrily, We Role Along

public class CatalogSubscriber
 implements ESubscriber
{

 @Override public void notify(final ENotificationMessage msg,
 final IESubscribeFeed feed) {
 Notification handling code here.

 }

}  

Page of 33 212

eBus Programmer’s Manual

Step 5: Unsubscribing
A subscriber has two ways to retract a subscription:

1. IESubscribeFeed.unsubscribe(): This call retracts the subscription but leaves the feed open.
This may be desirable if application objects can be enabled and disabled. On enablement the
subscription is put in place and retracted on disablement.

2. IESubscribeFeed.close: This permanently closes the subscription feed. Once closed the feed
can no longer be used. This call retracts an in place subscription. This may be desirable when
shutting down an object.

Note: you may still receive a notify callback after unsubscribing because the message was about to be
delivered when unsubscribing. So it may be necessary to check if the subscription is in place before
processing the delivered notification message.

Note: eBus maintains a weak reference back to application objects using eBus. When eBus detects such
an object’s finalization, eBus automatically retracts that object’s advertisements, subscriptions, and active
requests. That said, it is preferable that application objects close their open feeds themselves rather than
depending on the eBus automatic retraction. 

Page of 34 212

Merrily, We Role Along

public class CatalogSubscriber
 implements ESubscriber
{

 @Override public void shutdown() {
 if (mFeed != null) {
 // mFeed.unsubscribe() is not necessary since close() will unsubscribe.

 mFeed.close();

 mFeed = null;
 }

 }

}  

Page of 35 212

eBus Programmer’s Manual

Step 6: Complete subscriber code
import net.sf.eBus.client.EFeed.FeedScope;
import net.sf.eBus.client.EFeedState;
import net.sf.eBus.client.ESubscribeFeed;
import net.sf.eBus.client.ESubscriber;
import net.sf.eBus.client.IESubscribeFeed;
import net.sf.eBus.messages.EMessageKey;
import net.sf.eBus.messages.ENotificationMessage;

public class CatalogSubscriber
 implements ESubscriber {
 // Subscribe to this notification message class/subject key and feed scope.

 private final EMessageKey mKey;
 private final FeedScope mScope;

 // Store the feed here so it can be used to unsubscribe.

 private ESubscribeFeed mFeed;

 public CatalogSubscriber(final String subject, final FeedScope scope) {
 mKey = new EMessageKey(CatalogUpdate.class, subject);
 mScope = scope;

 mFeed = null;
 }

 @Override public void startup() {
 try {
 // This subscription has no associated ECondition; defaults to null.

 mFeed = (ESubscribeFeed.builder()).target(this)
 .messageKey(mKey)

 .scope(mScope)

 .build();

 mFeed.subscribe();

 } catch(IllegalArgumentException argex) {
 // Feed open failed. Place recovery code here.

 }

 }

 @Override public void feedStatus(final EFeedState feedState,
 final IESubscribeFeed feed) {
 // What is the feed state?

 if (feedState == EFeedState.DOWN) {
 // Down. There are no publishers. Expect no notifications until a

 // publisher is found. Put error recovery code here.

 } else {
 // Up. There is at least one publisher. Expect to receive notifications.

 }

 }

Page of 36 212

Merrily, We Role Along

 @Override public void notify(final ENotificationMessage msg,
 final IESubscribeFeed feed) {
 Notification handling code here.

 }

 @Override public void shutdown() {
 // mFeed.unsubscribe() is not necessary since close() will unsubscribe.

 mFeed.close();

 mFeed = null;
 }

}  

Page of 37 212

eBus Programmer’s Manual

Replier
Step 1: Implementing a replier
Every application class that wants to reply to request messages must implement the
net.sf.eBus.client.EReplier interface. Repliers both receive request messages and send reply
messages.

Go here to learn how eBus calls back to clients.

Note: previous code is not show in subsequent steps. Go here to see the complete code. 

Page of 38 212

Merrily, We Role Along

import net.sf.eBus.client.EReplier;
import net.sf.eBus.client.IEReplyFeed;
import net.sf.eBus.messages.ERequestMessage;

public class CatalogReplier
 implements EReplier
{

 // EReplier interface has two methods.

 @Override public void request(final EReplyFeed.ERequest request,
 final IEReplyFeed feed) {
 See step 3.

 }

 @Override public void cancelRequest(final EReplyFeed.ERequest request,
 final boolean feed) {
 See step 4.

 }

}  

Page of 39 212

eBus Programmer’s Manual

Step 2: Advertising a replier
Advertising tells eBus about what request messages a replier can handle. A replier will not receive
requests until it first advertises the request message key by opening the reply feed, advertising the replier,
and finally marking the feed state as up:

replyFeed = (net.sf.eBus.client.EReplyFeed.builder()).target(replier)

 .messageKey(key)

 .scope(scope)

 .condition(condition)

 .build();

where:

replier is the required EReplier instance. Since replier objects usually open their own reply
feeds, this is passed in as the replier argument.

key is a request message key containing the key’s ERequestMessage subject and message
subject.

scope is the feed scope.

condition is an optional condition used to restrict delivered request messages to those which
satisfy the condition. May be null.

Once opened, advertise the replier to requestors:

replyFeed.advertise();

replyFeed.updateFeedState(EFeedState.UP);

The EReplyFeed.updateFeedState(EFeedState.UP) informs eBus that this replier can respond to
requests. Just like EPublishFeed, there is a separation between advertising a feed and providing a
feed. The idea here is that if a replier is dependent on a resource need to generate responses and that
resource is unavailable, then the replier calls EReplyFeed.updateFeedState(EFeedState.DOWN).
This informs requestors that the replier is unavailable to handle requests until further notice. When the
resource is again available, then the replier calls EReplyFeed.updateFeedState(EFeedState.UP)
and requests will again be sent to the replier. 

Page of 40 212

Merrily, We Role Along

import java.util.ArrayList;
import java.util.List;
import net.sf.eBus.client.EFeed.FeedScope;
import net.sf.eBus.client.EReplier;
import net.sf.eBus.client.EReplyFeed;
import net.sf.eBus.messages.EMessageKey;
import net.sf.eBus.messages.ERequestMessage;

public class CatalogReplier
 implements EReplier
{

 // Replies to this request message class/subject key.

 private final EMessageKey mKey;

 // Replier handles requests posted within this scope.

 private final FeedScope mScope;

 // Store the replier feed here so it can be used to unadvertise.

 private EReplyFeed mFeed;

 // Stores the active requests. See steps 3 and 4.

 private final List<EReplyFeed.ERequest> mRequests;

 public CatalogReplier(final String subject, final FeedScope scope) {
 mKey = new EMessageKey(com.acme.CatalogOrder.class, subject);
 mScope = scope;

 mFeed = null;
 mRequests = new ArrayList<>();
 }

 @Override public void startup() {
 try {
 // This advertisement has no associated ECondition; defaults to null.

 mFeed = (EReplyFeed.builder()).target(this)
 .messageKey(mKey)

 .scope(mScope)

 .build();

 mFeed.advertise();

 // Let requestors know that this replier responds to requests.

 mFeed.updateFeedState(EFeedState.UP);

 } catch (IllegalArgumentException argex) {
 // Advertisement failed. Place recovery code here.

 }

 }

 @Override public void shutdown() {
 See step 6.

 }

}  

Page of 41 212

eBus Programmer’s Manual

Step 3: Handling a request
When eBus forwards a request message to a matching replier, the replier can respond either
synchronously or asynchronously. A synchronous response means replying within the request callback
method. An asynchronous response means calling ERequest after returning from the request callback.

The request message is stored in the ERequest instance and can be retrieved by calling
ERequest.request(). 

Page of 42 212

Merrily, We Role Along

import net.sf.eBus.messages.EReplyMessage;
import net.sf.eBus.messages.EReplyMessage.ReplyStatus;

public class CatalogReplier
 implements EReplier
{

 @Override public void request(final EReplyFeed.ERequest request,
 final IEReplyFeed feed) {
 // The request message is stored inside the request.

 final ERequestMessage msg = request.request();

 try {
 // Start processing the request now and reply later.

 // When sending multiple replies, set the reply status to

 // ReplyStatus.OK_CONTINUING.

 // For the final reply, set the reply status to ReplyStatus.OK_FINAL.

 startOrderProcessing(msg, request);

 mRequests.add(request);

 } catch (Exception jex) {
 // Exception thrown by startOrderProcessing().

 final EReplyMessage reply =
 new CatalogOrderReply(
 ReplyStatus.ERROR, // reply status.

 jex.getMessage()); // reply reason.

 request.reply(reply);

 }

 }

 @Override public void cancelRequest(final EReplyFeed.ERequest request,
 final boolean mayRespond) {
 See step 4.

 }

 public void orderReply(final ERequest request,
 final boolean status,
 final String reason) {
 See step 5.

 }

 @Override public void shutdown() {
 See step 6.

 }

}  

Page of 43 212

eBus Programmer’s Manual

Step 4: Canceling a request
When cancelRequest is called, the requestor is terminating the request. The replier is informed of the
cancellation via the callback:

EReplier.cancelRequest(ERequestFeed.ERequest request, boolean mayRespond);

When mayRespond is false this means the request is unilaterally canceled and is no longer active. The
replier may no longer reply to the request and should stop any processing with respect to the canceled
request.

When mayRespond is true this means that the replier may respond to the request and either accept the
cancellation or reject it. In both cases the replier should send a
net.sf.eBus.messages.EReplyMessage back to the requester with replyStatus set to either
EReplyMessage.ReplyStatus.CANCELED (cancel request accepted) or
EReplyMessage.ReplyStatus.CANCEL_REJECT (cancel request rejected). If the cancellation is
accepted then the replier should clean up the request as the request is now no longer active from the
replier's perspective.

If the cancellation is rejected then the request is still active and further replies may be posted to the
request. 

Page of 44 212

Merrily, We Role Along

import net.sf.eBus.client.ERequest.CancelStatus;

public class CatalogReplier
 implements EReplier
{

 @Override public void cancelRequest(final EReplyFeed.ERequest request,
 final boolean mayRespond) {
 try {
 // Throws an exception if the request cannot be stopped.

 stopOrderProcessing(request);

 mRequests.remove(request;

 // Reply to an optional cancellation.

 if (mayRespond) {
 cancelReply(ReplyStatus.CANCELED, null);
 }

 } catch (Exception jex) {
 // If request processing could not be stopped and this replier may

 // respond, then send back a cancel reject.

 if (mayRespond) {
 cancelReply(ReplyStatus.CANCEL_REJECT, jex.getMessage());

 }

 }

 }

 public void orderReply(final EReplyFeed.ERequest request,
 final boolean status,
 final String reason) {
 See step 5.

 }

 @Override public void shutdown() {
 See step 6.

 }

}  

Page of 45 212

eBus Programmer’s Manual

Step 5: Replying to a request
eBus allows a replier to send multiple reply messages for a given request. If you want to send an
intermediate reply, set the status to EReplyMessage.ReplyStatus.OK_CONTINUING. For the final
reply, set the status to EReplyMessage.ReplyStatus.OK_FINAL. If an error occurs which precludes
successfully completing the request, set the status to EReplyMessage.ReplyStatus.ERROR. This
reply status may be sent even after intermediate replies were previously sent.

An ERROR or OK_FINAL reply is a final reply. No more replies may be sent after sending either status. 

Page of 46 212

Merrily, We Role Along

public class CatalogReplier
 implements EReplier
{

 // Send an asynchronous reply to the request.

 public void orderReply(final EReplyFeed.ERequest request,
 final ReplyStatus status,
 final String reason) {
 final ERequestAd ad = mRequests.get(request);

 if (mRequests.contains(request) && request.isActive()) {
 request.reply((OrderReply.builder()).subject(mKey.subject)

 .timestamp(Instant.now())

 .replyStatus(status)

 .replyReason(reason)

 .build());

 // If the request processing is complete, remove the request.

 if (status.isFinal()) {
 mRequests.remove(request);

 }

 }

 }

 @Override public void shutdown() {
 See step 6.

 }

}  

Page of 47 212

eBus Programmer’s Manual

Step 6: Unadvertising a replier
A relier has three ways to let eBus know that it will no longer accept requests on the feed:

1. EReplyFeed.updateFeedState(EFeedState.DOWN): As previously mentioned, this tells eBus
that the replier is temporarily unable to handle requests on this feed but plans to do so again on the
feed as soon as the problem is cleared.

2. EReplyFeed.unadvertise(): The replier is retracting the announcement that it can respond to
requests on the feed. Un-advertising automatically sends an EReplyMessage with an error reply
status to all active request on the feed. The replier is able to put the advertisement back in place on
the feed in the future. This scenario could be used where the application is able to enable, disable
objects. On enablement, the object advertises the feed. On disablement, the object un-advertises.

3. EReplyFeed.close(): The replier is permanently closing the feed. This also retracts an in place
advertisement. Once closed, the feed cannot be used again. Like unadvertise, the feed’s active
requests receive an error reply.

Note: eBus maintains a weak reference back to application objects using eBus. When eBus detects such
an object’s finalization, eBus automatically retracts that object’s advertisements, subscriptions, and active
requests. That said, it is preferable that application objects close their open feeds themselves rather than
depending on the eBus automatic retraction. 

Page of 48 212

Merrily, We Role Along

public class CatalogReplier
 implements EReplier
{

 @Override public void shutdown() {
 final String subject = mKey.subject();

 // While eBus will does this for us, it is better to do it ourselves.

 for (EReplyFeed.ERequest request : mRequests) {
 request.reply((EReplyMessage.builder()).subject(subject)

 .timestamp(Instant.now())

 .replyStatus(ReplyStatus.ERROR)

 .replyReason("shutting down")

 .build());

 }

 mRequests.clear();

 if (mFeed != null) {
 // close() implicitly unadvertise the feed.

 mFeed.close();

 mFeed = null;
 }

 }

}  

Page of 49 212

eBus Programmer’s Manual

Step 7: Complete replier code
import java.util.ArrayList;
import java.util.List;
import net.sf.eBus.client.EFeed.FeedScope;
import net.sf.eBus.client.EReplier;
import net.sf.eBus.client.EReplyFeed;
import net.sf.eBus.client.IEReplyFeed;
import net.sf.eBus.messages.EReplyMessage
import net.sf.eBus.messages.EReplyMessage.ReplyStatus;
import net.sf.eBus.messages.EMessageKey;
import net.sf.eBus.messages.ERequestMessage;

public class CatalogReplier
 implements EReplier
{

 // Replies to this request message class/subject key.

 private final EMessageKey mKey;

 // Replier handles requests posted within this scope.

 private final FeedScope mScope;

 // Store the replier feed here so it can be used to unadvertise.

 private EReplyFeed mFeed;

 // Stores the active requests.

 private final List<EReplyFeed.ERequest> mRequests;

 public CatalogReplier(final String subject, final FeedScope scope) {
 mKey = new EMessageKey(com.acme.CatalogOrder.class, subject);
 mScope = scope;

 mFeed = null;
 mRequests = new ArrayList<>();
 }

 @Override public void startup() {
 try {
 // This advertisement has no associated ECondition; defaults to null.

 mFeed = (EReplyFeed.builder()).target(this)
 .messageKey(mKey)

 .scope(mScope)

 .build();

 mFeed.advertise();

 mFeed.updateFeedState(EFeedState.UP);

 } catch (IllegalArgumentException argex) {
 // Advertisement failed. Place recovery code here.

 }

 }

Page of 50 212

Merrily, We Role Along

 @Override public void request(final EReplyFeed.ERequest request,
 final IEReplyFeed feed) {
 final ERequestMessage msg = request.request();

 try {
 mRequests.add(request);

 startOrderProcessing(msg, request);

 } catch (Exception jex) {
 request.reply(new CatalogOrderReply(ReplyStatus.ERROR, // reply status.
 jex.getMessage())); // reply reason.

 }

 }

 @Override public void cancelRequest(final EReplyFeed.ERequest request,
 final boolean mayRespond) {
 try {
 // Throws an exception if the request cannot be stopped.

 stopOrderProcessing(request);

 mRequests.remove(request;

 // Reply to an optional cancellation.

 if (mayRespond) {
 cancelReply(ReplyStatus.CANCELED, null);
 }

 } catch (Exception jex) {
 // If request processing could not be stopped and this replier may

 // respond, then send back a cancel reject.

 if (mayRespond) {
 cancelReply(ReplyStatus.CANCEL_REJECT, jex.getMessage());

 }

 }

 }

 public void orderReply(final EReplyFeed.ERequest request,
 final boolean status,
 final String reason) {
 final ERequestAd ad = mRequests.get(request);

 if (mRequests.contains(request) && request.isActive()) {
 request.reply((OrderReply.builder()).subject(mKey.subject)

 .timestamp(Instant.now())

 .replyStatus(status)

 .replyReason(reason)

 .build();

 // If the request processing is complete, remove the request.

 if (status.isFinal()) {
 mRequests.remove(request);

 }

Page of 51 212

eBus Programmer’s Manual

 }

 }

 @Override public void shutdown() {
 final String subject = mKey.subject();

 // While eBus will does this for us, it is better to do it ourselves.

 for (EReplyFeed.ERequest request : mRequests) {
 request.reply((EReplyMessage.builder()).subject(subject)

 .timestamp(Instant.now())

 .replyStatus(ReplyStatus.ERROR)

 .replyReason("shutting down")

 .build());
 }

 mRequests.clear();

 if (mFeed != null) {
 mFeed.close();

 mFeed = null;
 }

 }

}

Page of 52 212

Merrily, We Role Along

Page of 53 212

eBus Programmer’s Manual

Requestor
Step 1: Implementing a requestor
Every application class that sends request messages must implement the
net.sf.eBus.client.ERequestor interface.

Go here to learn how eBus calls back to clients.

Note: previous code is not show in subsequent steps. Go here to see the complete code. 

Page of 54 212

Merrily, We Role Along

import net.sf.eBus.client.ERequestFeed;
import net.sf.eBus.client.ERequestor;
import net.sf.eBus.client.IERequestFeed;

import net.sf.eBus.messages.EReplyMessage;

public class CatalogRequestor
 implements ERequestor
{

 // ERequestor interface has two methods.

 @Override public void feedStatus(final EFeedState feedState,
 final IERequestFeed feed) {
 See step 3.

 }

 @Override public void reply(final int remaining,
 final EReplyMessage reply,
 final ERequestFeed.ERequest request) {
 See step 5.

 }

}  

Page of 55 212

eBus Programmer’s Manual

Step 2: Opening a request
A requestor makes requests by opening the request feed and subscribing.

requestFeed =

 (net.sf.eBus.client.ERequestFeed.builder()).target(requestor)

 .messageKey(key)

 .scope(scope)

 .build();

requestFeed.subscribe();

where:

requestor is the required ERequestor instance.

key is a request message key containing the key’s ERequestMessage subject and message
subject.

scope is the feed scope. 

Page of 56 212

Merrily, We Role Along

import java.util.ArrayList;
import java.util.List;
import net.sf.eBus.client.EFeed.FeedScope;
import net.sf.eBus.client.ERequestFeed;
import net.sf.eBus.client.ERequestor;
import net.sf.eBus.messages.EMessageKey;
import net.sf.eBus.messages.EReplyMessage;

public class CatalogRequestor
 implements ERequestor
{

 private final EMessageKey mKey;
 private final FeedScope mScope;
 private final List<ERequestFeed.ERequest> mRequests;
 private ERequestFeed mFeed;

 public CatalogRequestor(final String subject, final FeedScope scope) {
 mKey = new EMessageKey(com.acme.CatalogOrder.class, subject);
 mScope = scope;

 mFeed = null;
 mRequests = new ArrayList<>();
 }

 @Override public void startup() {
 try {
 // Put the request advertisement in place.

 mFeed = (ERequestFeed.builder().target(this)
 .messageKey(mKey)

 .scope(mScope)

 .build();

 mFeed.subscribe();

 } catch (IllegalArgumentException argex) {
 // Open failed. Place recovery code here.

 }

 }

 @Override public void shutdown() {
 See step 6.

 }

 @Override public void reply(final int remaining,
 final EReplyMessage reply,
 final ERequestFeed.ERequest request) {
 See step 4.

 }

}  

Page of 57 212

eBus Programmer’s Manual

Step 3: Handling a replier’s feed status
eBus informs a requestor whether there are any repliers for the request message and subject. The feed
state is set to EFeedState.UP if there is at least one replier. At this point you may expect to successfully
place a request. There is alway a possibility that the request will fail due to:

1. all in-scope repliers having an advertisement condition and

2. the request fails each of those conditions.

If there no repliers for a request message key, eBus will call the feed status method with a
EFeedState.DOWN feed state. At this point you can expect requests to fail.

Page of 58 212

Merrily, We Role Along

public class CatalogRequestor
 implements ERequestor
{

 @Override public void feedStatus(final EFeedState feedState,
 final IERequestFeed feed) {
 // What is the replier feed state?

 if (feedState == EFeedState.DOWN) {
 // Down. There are no repliers. Requests should fail until an UP feed

 // state is announced.

 } else {
 // Up. There is at least one replier. Requests may now be placed.

 }

 }

}

Page of 59 212

eBus Programmer’s Manual

Step 4: Making a request
Requests are placed using the open and subscribed ERequestFeed. Create an ERequestMessage-
subclassed message and have the request feed send it:

 final ERequestMessage msg = new AppRequestMessage();
 final ERequestFeed.ERequest request = mFeed.request(msg);

ERequestFeed.request(ERequestMessage) returns the feed instance encapsulating the request.
The requestor may now expect to receive replies to this request.

If there are no repliers for the request and feed scope, then an IllegalStateException is thrown. No
replies will be sent to the requestor for this request message.

Note: once the ERequestFeed.ERequest instance is returned, the application is responsible for
tracking all active requests. The ERequestFeed does not store or track requests on behalf of the
application. ERequestFeed.close() does not automatically close active requests opened by the
ERequestFeed instance. The application is responsible for closing active requests.

Note: if a request is made on a non-eBus Dispatcher thread, then it is important to synchronize placing
requests with receiving replies. There is a very real chance that a reply will be received before
ERequestFeed.request() returns. It is recommended that the application store away all information
needed to handle a reply before making the request. Any bookkeeping that cannot be done prior to
making the request means that the request and reply handling must be made inside some sort of
synchronization.

If a request is made on an eBus Dispatcher thread, then synchronization is not necessary.

Page of 60 212

Merrily, We Role Along

public class CatalogRequestor
 implements ERequestor
{

 public void placeOrder(final String product,
 final int quantity,
 final Price price,
 final ShippingEnum shipping,
 final ShippingAddress address)
 {

 final CatalogOrder msg = (CatalogOrder.builder()).subject(mKey.subject())
 .timestamp(Instant.now())

 .product(product)

 .quantity(quantity)

 .price(price)

 .shipping(shipping)

 .address(address)

 .build();

 try {
 // Do any application-specified bookkeeping here before placing the

 // request. This way the information needed to handle the reply is

 // in place.

 // Order placed via a non-eBus thread, so synchronization is needed.

 // You need to synchronize this requestor because there is a real chance

 // that eBus will call reply() before returning from request() and this

 // call is made from a non-eBus thread (go here to learn more).

 synchronized (mRequests) {
 mRequests.add(mFeed.request(msg));

 }

 } catch (Exception jex) {
 // Request failed. Put recovery code here.

 }

 }

 @Override public void shutdown() {
 See step 5.

 }

 @Override public void reply(final int remaining,
 final EReplyMessage reply,
 final ERequestFeed.ERequest request) {
 See step 4.

 }

}

Page of 61 212

eBus Programmer’s Manual

Step 5: Receiving replies
eBus continues to send replies to the requestor as long as repliers are sending replies. The
ERequest.reply(int remaining, EReplyMessage reply, ERequestFeed.ERequest request)
callback parameters are:

remaining: the number of repliers still sending replies. When this value is zero, then this is the
final reply and no more replies will be forthcoming. The request is completed.
reply: the reply message itself. Check reply.replyStatus to determine if 1) the request is
accepted or rejected and 2) if this is the final reply from this replier or if more replies are
forthcoming. If replyStatus is ReplyStatus.ERROR, then the replier is rejecting the request
and this is the replier’s final reply. reply.replyReason should contain text explaining why the
request was rejected. If replyStatus is ReplyStatus.OK_CONTINUING, then the replier
accepted the request and sent this reply with more to follow. ReplyStatus.OK_FINAL means that
this is the replier’s final reply to the request. 
 
Note: it is possible for a replier to send an initial ReplyStatus.OK_CONTINUING reply followed by
a ReplyStatus.ERROR reply due to the replier being unable to complete the request.

request: this reply applies to this request.

Again, synchronization may be needed to coordinate the request with the reply. 

Page of 62 212

Merrily, We Role Along

public class CatalogRequestor
 implements ERequestor
{

 @Override public void shutdown() {
 See step 6.

 }

 @Override public void reply(final int remaining,
 final EReplyMessage reply,
 final ERequestFeed.ERequest request) {
 final String reason = msg.replyReason();

 if (msg.replyStatus == EReplyMessage.ReplyStatus.ERROR) {
 // The replier rejected the request. Report the reason

 }

 // The replier accepted the request. Is this the last reply?

 else if (msg.replyStatus == EReplyMessage.ReplyStatus.OK_CONTINUING) {
 // The replier will be sending more replies.

 } else {
 // This is the replier's last reply.

 }

 // Have all replies been received from all repliers?

 if (remaining == 0) {
 // Yes. Remove the request from the active list.

 synchronized (mRequests) {
 mRequests.remove(request);

 }

 }

 }

}

Page of 63 212

eBus Programmer’s Manual

Step 6: Canceling a request
An application is free to cancel an active request at any time. This is done by closing the returned
ERequestFeed.ERequest instance:

 ERequestFeed.ERequest.close();

It is still possible for the requestor to receive replies for this request after calling close() because the
replies were posted to the requestor prior to the close but not yet delivered.

Closing an inactive or completed request is harmless.

eBus release 5.6.0 introduced a two new features with respect to canceling an active request:

1. net.sf.eBus.messages.EReplyInfo annotation has a new element: boolean mayClose.
This element defaults to true which means that ERequestFeed.ERequest.close() may be
used to cancel an active request. If set to false then ERequest.close() may not be called
(results in an IllegalStateException being thrown). This leads to the second change.

2. A new method ERequestFeed.ERequest.cancel() is added which is an optional cancel
request. Optional means that active repliers to this request may respond to this cancel request.
Those cancel replies will most likely be EReplyMessage instances with a replyStatus set to
either ReplyStatus.CANCELED (cancel request accepted) or ReplyStatus.CANCEL_REJECT
(cancel request rejected). If all repliers accept the cancel request then the request is no longer
active. If any one replier rejects the cancel request then the request is still active and the
requester may expect further replies to the request.

Page of 64 212

Merrily, We Role Along

public class CatalogRequestor
 implements ERequestor
{

 // Cancel all outstanding active requests and close the request feed.

 @Override public void shutdown() {
 synchronized (mRequests) {
 for (ERequestFeed.ERequest request : mRequests) {
 request.close();

 }

 mRequests.clear();

 }

 if (mFeed != null) {
 mFeed.close();

 mFeed = null;
 }

 }

}

Page of 65 212

eBus Programmer’s Manual

Step 7: Complete requestor code
import java.util.ArrayList;
import java.util.List;
import net.sf.eBus.client.EFeed.FeedScope;
import net.sf.eBus.client.ERequestFeed;
import net.sf.eBus.client.ERequestor;
import net.sf.eBus.client.IERequestFeed;

import net.sf.eBus.messages.EMessageKey;
import net.sf.eBus.messages.EReplyMessage;

public class CatalogRequestor
 implements ERequestor
{

 private final EMessageKey mKey;
 private final FeedScope mScope;
 private final List<ERequestFeed.ERequest> mRequests;
 private ERequestFeed mFeed;

 public CatalogRequestor(final String subject, final FeedScope scope) {
 mKey = new EMessageKey(com.acme.CatalogOrder.class, subject);
 mScope = scope;

 mFeed = null;
 mRequests = new ArrayList<>();
 }

 @Override public void startup() {
 try {
 mFeed =

 (ERequestFeed.builder()

 .target(this).messageKey(mKey).scope(mScope).build();
 mFeed.subscribe();

 } catch (IllegalArgumentException argex) {
 // Open failed. Place recovery code here.

 }

 }

 @Override public void shutdown() {
 synchronized (mRequests) {
 for (ERequestFeed.ERequest request : mRequests) {
 request.close();

 }

 mRequests.clear();

 }

 if (mFeed != null) {
 mFeed.close();

 mFeed = null;

Page of 66 212

Merrily, We Role Along

 }

 }

 @Override public void feedStatus(final EFeedState feedState,
 final IERequestFeed feed) {
 if (feedState == EFeedState.DOWN) { // Down. There are no repliers.
 } else { /* Up. There is at least one replier. */ }
 }

 @Override public void reply(final int remaining,
 final EReplyMessage reply,
 final ERequestFeed.ERequest request) {
 final String reason = msg.replyReason();

 if (msg.replyStatus == EReplyMessage.ReplyStatus.ERROR) {
 // The replier rejected the request. Report the reason

 } else if (msg.replyStatus == EReplyMessage.ReplyStatus.OK_CONTINUING) {
 // The replier will be sending more replies.

 } else {
 // This is the replier's last reply.

 }

 if (remaining == 0) {
 synchronized (mRequests) {
 mRequests.remove(request);

 }

 }

 }

 public void placeOrder(final String product,
 final int quantity,
 final Price price,
 final ShippingEnum shipping,
 final ShippingAddress address) {
 final CatalogOrder msg = (CatalogOrder.builder()).subject(mKey.subject())
 .timestamp(Instant.now())

 .product(product)

 .quantity(quantity)

 .price(price)

 .shipping(shipping)

 .address(address)

 .build();

 try {
 synchronized (mRequests) { mRequests.add(mFeed.request(msg)); }
 } catch (Exception jex) {
 // Request failed. Put recovery code here.

 }

 }

}

Page of 67 212

eBus Programmer’s Manual

Page of 68 212

Merrily, We Role Along

Using Lambda Expression Callbacks
eBus v. 4.2.0 introduced using lambda expression-based callbacks rather than by overriding the role
interface methods. This was accomplished by giving the role interface methods a default implementation
which throws an UnsupportedOperationException. An application class is still required to
implement the role interface associated with a feed but not required to override the interface methods.

Instead, the class calls the feed’s callback method, passing in a lambda expression which defines the
callback target. eBus calls back to this code rather than the role interface method. Note that this callback
must be put in place after the feed is opened but before it is advertised/subscribed. Setting a callback
when the feed is closed or advertised/subscribed results in an IllegalStateException. Further, if the
application neither overrides the role interface method nor puts the matching callback in place, then
advertise() and subscribe() throw an IllegalStateException which explains that eBus has
no way to call back to the application.

It is possible to mix-and-match interface method override with a callback. The next page show how a
class implementing ESubscriber receives feed status callbacks using the interface method and
notification messages using a lambda expression callback. This example also shows the class opening
two different feeds, which is the reason for creating lambda expression callbacks.

The subscriber needs to handle multiple notification feeds but each in a unique way. Using a role interface
means that notifications from those different feeds all arrive at the same place:

notify(ENotificationMessage, IESubscribeFeed).

This method becomes a message router, untangling the different notification messages and forwarding
each message to its ultimate destination. This method is pure overhead.

This overhead is removed by using IESubscribeFeed.notifyCallback(NotifyCallback) to
directly link eBus with that ultimate destination. The following example code is taken from the previous
ESubscriber code. So much of the extraneous code is elided to focus attention on the lambda
callbacks.

Note: lambda expression callbacks are backward compatible with previous eBus code. Applications will
see no performance degradation using eBus 4.2.0 or later.

Note: as of eBus release 7.1.0, the notify callback method's first parameter may be declared as the target
ENotificationMessage subclass. In the following example code, the callback method
latestUpdate declares the message type as CatalogUpdate. This means there is no longer the
need to declare the type as ENotificationMessage and downcast to the target type.

Page of 69 212

eBus Programmer’s Manual

import net.sf.eBus.client.EFeed.FeedScope;
import net.sf.eBus.client.EFeedState;
import net.sf.eBus.client.ESubscribeFeed;
import net.sf.eBus.client.ESubscriber;
import net.sf.eBus.client.IESubscribeFeed;
import net.sf.eBus.messages.EMessageKey;
import net.sf.eBus.messages.ENotificationMessage;

public class CatalogSubscriber
 implements ESubscriber {
 public CatalogSubscriber(final String subject, final FeedScope scope) { ... }

 @Override public void startup() {
 try {
 // ECondition may now be defined using a lambda expression.

 mFeed1 =

 (ESubscribeFeed.builder())

 .target(this)
 .messageKey(mKey1),

 .scope(mScope1)

 .condition(m -> ((AppMessage) m).value >= 100))

 .notifyCallback(

 (msg, feed) -> { /* Put notify callback code here */ })

 .build();

 mFeed1.subscribe();

 mFeed2 = (ESubscribeFeed.builder()).target(this)
 .messageKey(mKey2)

 .scope(mScope2)

 .notifyCallback(this::latestUpdate)
 .build();

 mFeed2.subscribe()

 } catch (IllegalArgumentException argex) {
 // Feed open failed. Place recovery code here.

 // Note: mFeed is still null.

 }

 }

 @Override public void feedStatus(final EFeedState feedState,
 final IESubscribeFeed feed) {
 // Status updates for all feeds handled in the same way.

 }

 private void latestUpdate(final CatalogUpdate msg,
 final IESubscribeFeed feed) {
 // mFeed2 notification handling code here.

 // Note: method has same signature as ESubscribe.notify method.

 }

}  

Page of 70 212

Merrily, We Role Along

ERequestor Callbacks
eBus request message classes specify which reply messages may be sent in response to the request.
Given that, it would be nice to associate a different callback for each reply message class. With that in
mind, eBus 4.3.2 introduced a new request callback method:

 public void requestCallback(EMessageKey, ReplyCallback)

The idea is that the callback is associated with a particular reply message key. A reply is forwarded to the
callback associated with the reply’s message key.

Note: care must be taken when using both requestCallback(ReplyCallback) and
requestCallback(EMessageKey, ReplyCallback). The first method sets the callback for all reply
message keys and will overwrite any previously specified reply message key callbacks. Therefore, you
should use the first method to set a generic callback and then the second method for reply-specific
callbacks.

For example, take the following request message class:

@EReplyInfo(replyMessageClasses={OptionOrderState.class,OptionOrderFill.class})
public final class OptionOrderRequest
 extends ERequestMessage

OptionOrderRequest has three possible replies: EReplyMessage, OptionOrderState, and
OptionOrderFill. When an option order is placed, EReplyMessage is sent in response to specify
whether it is accepted (EReplyMessage.ReplyStatus.OK_CONTINUING) or rejected
(EReplyMessage.ReplyStatus.ERROR). If accepted, then one or more OptionOrderState
messages is sent until either the order is completely filled or canceled (where isFinal() returns true).
The OptionOrderFill specifies that either a partial or complete fill was made against the order. This
message is never a final reply (i.e., reply state is always OK_CONTINUING).

EReplyMessage is handled by a generic method orderReply and the last two by separate methods
orderState and orderFill. This can be done as follows:

final String option = “...”;
final EMessageKey requestKey = new EMessageKey(OptionOrderRequest.class, option);

// Open the request feed, setting status and reply callbacks.
// Note: message key must be set prior to setting callbacks for specific reply message
// classes.
orderFeed = (ERequestFeed.builder()).target(this)
 .messageKey(requestKey)
 .scope(EFeed.FeedScope.REMOTE)
 .statusCallback(this::requestStatus)
 .replyCallback(this::orderReply)
 .replyCallback(OptionOrderState.class,
 this::orderState)
 .replyCallback(OptionOrderFill.class,
 this::orderFill)
 .build();

Page of 71 212

eBus Programmer’s Manual

Hybrid Object Pattern
When using eBus in a major application the central eBus objects will contain so many feeds that the
object becomes convoluted and difficult to understand. As an example consider an eBus object
implementing a trading algorithm. This object implements the following roles:

EReplier: receives algo requests to buy or sell an instrument using the algorithm's logic.

ERequestor: algorithm places order on one or more exchanges in order to satisfy its own request.

ESubscriber: algorithm subscribes to market data, dynamic configuration changes to algorithm
parameters, instrument and exchange dynamic performance statistics used to guide placing
exchange orders.

EPublisher: algorithm publishes its own dynamic performance statistics.

Placing all these feeds and associated data members into a single eBus object results in code confusion,
making it difficult to separate the essential algorithm data and logic from subsidiary information supporting
the algorithm. This section describes a hybrid object pattern useful for reducing this code confusion.

Firstly, what is a hybrid object? There are two types of classes: active and passive. A passive object does
not initiate actions but is only acted upon. Example passive classes are java.util.ArrayList or
java.time.Duration. Instances of these classes do nothing until other code initiates a method call to
the instance. A passive object is contained within an active object.

An active object can initiate action by sending an eBus message. An active object does not need to wait
to be acted upon before acting. An active object does not exist within another object, standing alone
within an application.

A hybrid object lies between active and passive. A hybrid object sends and/or receives messages but is
contained within an active object. This active object treats the hybrid object as a passive object,
interacting with the hybrid object using method calls. Please note that hybrid objects should not be shared
among active objects.

Back to the trading algorithm active object. The following example concentrates on the market data hybrid
object only but can be readily expanded to handle the feeds as well.

public final class MakeMoneyAlgo
 implements EReplier, ERequestor, ESubscriber, EPublisher {

 // Hybrid objects created on active object start up.
 private MarketData mMktData;
 private MakeMoneyConfig mAlgoConfig;
 ...

 private EReplyFeed mOrderFeed;

 public MakeMoneyAlgo(...) { ... }

 @Override public void startup() {
 // Create hybrid instances and then have hybrid create its feeds.
 // Note that this MakeMoneyAlgo reference is passed to hybrid object
 // constructor.
 mMktData = new MarketData(this, ...);
 mMktData.startup();

 mOrderFeed = (EReplyFeed.builder()).target(this)
 .messageKey(order request key)
 .scope(EFeed.FeedScope.REMOTE)
 .requestCallback(this::onOrder)
 .build();

Page of 72 212

Merrily, We Role Along

 mOrderFeed.advertise();
 mOrderFeed.updateFeedState(EFeedState.UP);
 }

 private void onOrder(final EReplyFeed.ERequest request,
 final IEReplyFeed feed) {
 final OrderRequest newOrder = (OrderRequest) request;
 final OrderBook book =
 mMktData.getOrderBook(newOrder.instrument, mAlgoConfig.getBookDepth());

 // Validate and process order request using information retrieved from hybrid
 // objects.
 }
}

Note that MakeMoneyAlgo implements the EReplier, ERequestor, ESubscriber, and EPublisher
interfaces and not the hybrid objects. This is because only active objects may implement eBus role
interfaces. This includes the EObject interface.

Passing the MakeMoneyAlgo reference to the MarketData constructor is key to any hybrid object:

public final class MarketData {

 // MakeMoneyAlgo instance containing this hybrid object.
 private final MakeMoneyAlgo mOwner;

 // Market data subscription made on start up.
 private ESubscribeFeed mMktDataFeed;

 // Place order book data members here.

 public MarketData(final MakeMoneyAlgo owner, ...) {
 mOwner = owner;
 ...
 }

 public void startup() {
 // Note: hybrid feed uses MakeMoneyAlgo reference as target but uses
 // MarketData methods for feed status and message delivery.
 // This is what makes MarketData a hybrid object.
 mMktDataFeed = (ESubscribeFeed.builder()).target(mOwner)
 .messageKey(market data message key)
 .scope(EFeed.FeedScope.REMOTE)
 .statusCallback(this::onFeedStatus)
 .notifyCallback(this::onMarketData)
 .build();
 mMktDataFeed.subscribe();
 }

 public OrderBook getOrderBook(final Instrument instrument, final int depth) {
 // Returns instrument's order book up to the given depth. MakeMoneyAlgo uses
 // this order book combined with other parameters to decide what orders to
 // place on what exchanges.
 }

 private void onFeedStatus(final EFeedState state, final IESubscribeFeed feed) {
 // Place feed status update code here especially when market data feed goes
 // down.
 }

 private void onMarketData(final ENotificationMessage msg,
 final IESubscribeFeed feed) {
 // Update market data members with latest update.
 }
}

See Dispatcher section for why hybrid object feeds must target its active object owner. 

Page of 73 212

eBus Programmer’s Manual

Get the Message
Messages are what eBus is all about. Messages are easy to define because they are the simplest of
POJOs . Beyond constructors, an eBus message class does not require any methods or fields (although 2

a field-less message is not very useful). But, like any Java class definition, a message may be as complex
as you wish to make it.

This section shows how to define eBus message classes.

Note: As of eBus v. 5.2.0 message definition has fundamentally changed. Please read this section.
eBus now uses the builder pattern when de-serializing. eBus orders fields by name and size starting with
fields of fixed size from 8 bytes to 1 bytes followed by variable-sized fields.

 POJO: Plain Old Java Object.2

Page of 74 212

Get the Message

Defining an eBus Message
Step 0: eBus supported message field types
eBus message fields must either an eBus-defined type or a user-defined type (shown in step 6). The
eBus-supported types are:

1. a Java primitive (boolean, byte, char, double, float, int, long, and short),

2. the Java class equivalent to the above primitives,

3. an enum type,

4. java.math.BigDecimal and BigInteger,

5. java.lang.Class,

6. java.util.Date,

7. java.time classes Duration, Instant, LocalDate, LocalTime, LocalDateTime,
MonthDay, OffsetTime, OffsetDateTime, Period, YearMonth, ZoneOffset,
ZoneId, and ZonedDateTime,

8. java.io.File,

9. java.net.InetAddress,

10. java.net.InetSocketAddress,

11. net.sf.eBus.messages.EMessageKey,

12. java.lang.String,

13. java.net.URI,

14. java.util.UUID,

15. org.decimal4j.api.Decimal interface subtypes,

16. net.sf.eBus.messages.EField user-defined subclass,3

17. net.sf.eBus.messages.EFieldList ,4

18. net.sf.eBus.messages.EMessageList, and

19. net.sf.eBusx.geo EFIeld implementations of GeoJSON objects.

A homogenous array of the above types by appending [] to the end of the message type.

See Appendix A: Binary Message Layout to learn how the above field types are serialized. 

 See section "Step 6: Message field type definition" for more information on user-defined fields.3

 See section “Arrays and List Fields” for more information about field lists, message lists, and arrays.4

Page of 75 212

https://datatracker.ietf.org/doc/html/rfc7946

eBus Programmer’s Manual

Step 1: Message Class
eBus messages are Java classes extending either net.sf.eBus.messages.ENotification,
ERequestMessage, or EReplyMessage, and having zero to 31 public final data members:5

import java.io.Serializable;
import net.sf.eBus.messages.ENotificationMessage;

 See step 2.

public final class CatalogOrder
 extends ERequestMessage
 implements Serializable
{

 See step 3.

 // All transported data members must be public, final, and eBus-supported types.

 // Note: Money is a net.sf.eBus.message.EField subclass which stores the price

 // and currency.

 public final String orderId;
 public final Money price; See step 6.
 public final int quantity;
 private static final long serialVersionUID = 1L;
}

 The reason for the 31 message field limit is due to how eBus serializes messages. Go here to learn 5

more.

Page of 76 212

Get the Message

Step 2: Message Annotation
@EReplyinfo run-time, class-level attribute is required for request messages only. This annotation
defines the EReplyMessage-derived message classes which may be sent in reply to this request. A
replier is limited to sending a reply message that is listed in CatalogOrder’s @EReplyInfo annotation
and its super class’ annotation. Since all requests must descend from ERequestMessage which has the
annotation @EReplyInfo(replyMessageClasses={EReplyMessage.class},
mayClose=false), the class EReplyMessage may be sent in reply to any request.

The attribute mayClose=false means that this request may not canceled using the method
ERequestFeed.ERequest.close() - which unilaterally cancels the request. Instead the method
ERequest.cancel() may be used which asks active repliers to accept the request cancellation. These
repliers may accept or reject this cancellation. If all repliers accept then the request is canceled.
Otherwise the request is still active. Attribute mayClose may be overridden by ERequestMessage
subclasses. So while ERequestMessage sets mayClass to false, a subclass can set it this attribute to
true.

See Step 4: Canceling a request for more information about optional request cancellation from the replier
perspective.

An attempt to send a reply message unsupported by the request results in a run-time exception. This
error is not found at compile time.

import java.io.Serializable;
import net.sf.eBus.messages.EReplyInfo;
import net.sf.eBus.messages.ERequestMessage;

@EReplyInfo(replyMessageClasses={CatalogOrderReply.class}, mayClose=false)
public final class CatalogOrder
 extends ERequestMessage
 implements Serializable {
 See step 3.

 public final String orderId;
 public final Money price; See step 5.
 public final int quantity;
 private static final long serialVersionUID = 1L;
}

Page of 77 212

eBus Programmer’s Manual

Step 3: Static Message builder() method
Every eBus message subclass must provide a builder used to construct the target message instance.
This builder is provided by the following method:

 public static builder-class builder()

where builder-class is defined in step 4.

Note: Class CatalogOrder has five fields total: subject, timestamp, orderId, price, and
quantity.

import java.io.Serializable;
import net.sf.eBus.messages.EReplyInfo;
import net.sf.eBus.messages.ERequestMessage;

@EReplyInfo (replyMessageClasses={CatalogOrderReply.class}, mayClose=false)
public final class CatalogOrder
 extends ERequestMessage
 implements Serializable {

 public final String orderId;
 public final Money price; See step 6.
 public final int quantity;
 private static final long serialVersionUID = 1L;

 // Step 5 shows how a message class is constructed from the builder.

 // This method must be named "builder" and be public static.
 public static OrderBuilder builder() {
 return (new OrderBuilder());
 }

// Inner class OrderBuilder defined next.

}

Page of 78 212

Get the Message

Step 4: Builder Inner Class
The Builder subclass returned by the public static builder() method is responsible for recreating
the target message class instance from the de-serialized fields. This class must extend the Builder class
corresponding to the target message class. When building an ENotificationMessage sub-class, then the
builder class must extend ENotificationMessage.Builder<target-class, builder-
class>. The same applies to ERequestMessage and EReplyMessage. Note that the Builder base
classes take two generic parameters: target message class (M) and builder leaf class (B). The first
parameter is used to define the M build() method which generates the target message instance from
the configured message parameters. The second parameter is used to return the correct builder class
when a message field is defined in a super class. This allows chaining together parameter set method
even when the setters are defined at different levels of the builder class hierarchy.

The builder instance is the sole argument to the message class constructor (see step 5).

import net.sf.eBus.messages.ERequestMessage;
import java.io.Serializable;

@EReplyInfo (replyMessageClasses={CatalogOrderReply.class}, mayClose=false)
public final class CatalogOrder
 extends ERequestMessage
 implements Serializable {

 // Builder class should be public so it can be accessed by all other classes

 // and static because it does not share its owning class' members.

 public static final class OrderBuilder
 extends ERequestMessage.Builder<CatalogOrder, OrderBuilder> {

 // Builder has the same data member as the target class - but not public

 // and final.

 private String mOrderId;
 private Money mPrice;
 private int mQuantity;

 // Constructor shown in Step 4a.

 // Setter methods shown in Step 4b.

 // Abstract method overrides shown in Step 4c.
 }

}

Page of 79 212

eBus Programmer’s Manual

Step 4a: Builder Inner Class Constructor
The builder class constructor takes zero arguments and is private because only the public static
builder() method in the encapsulating class can create a builder class instance. The builder class
constructor passes the target-class.class instance to the builder super class constructor. This class
instance is used to create a net.sf.eBus.messages.ValidationException when the builder
detects that an invalid target message was configured causing the build() method to fail.

import net.sf.eBus.messages.ERequestMessage;

// Builder class should be public so it can be accessed by all other classes

// and static because it does not share its owning class' members.

public static final class OrderBuilder
 extends ERequestMessage.Builder<CatalogOrder, OrderBuilder> {

 private String mOrderId;
 private Money mPrice;
 private int mQuantity;

 // private constructor so only public static OrderBuilder builder()

 // method can instantiate this class.

 private OrderBuilder() {
 super (CatalogOrder.class);
 }

 // Setter methods shown in Step 4b.

 // Abstract method overrides shown in Step 4c.
}  

Page of 80 212

Get the Message

Step 4b: Builder Inner Class Setter Methods
There must be one setter for each public final message field in the encapsulating class with the 6

signature:

public builder-class field-name(final field-type value)

where:
builder-class is the builder class name,
field-name exactly matches the message field name, and
field-type matches the message field type.

Failure to correctly define a setter message for all the encapsulating class' message fields results in a
net.sf.eBus.messages.InvalidMessageException thrown by DataType.findType(Class)
method.

The setter method is responsible for checking if the provided value is valid by itself. Override the
validate method to check if the overall configuration is acceptable.

import net.sf.eBus.messages.ERequestMessage;

public static final class OrderBuilder
 extends ERequestMessage.Builder<CatalogOrder, OrderBuilder> {
 // Constructor shown in Step 4a.

 public OrderBuilder orderId(String id) {
 if (id == null || id.isEmpty()) {
 throw (new IllegalArgumentException("id is null or empty"));
 }

 mOrderId = id;

 return (this);
 }

 public OrderBuilder price(Money px) {
 if (money == null) {
 throw (new NullPointerException("px is null"));
 }

 mPrice = px;

 return (this);
 }

 public OrderBuilder quantity(int qty) {
 if (qty <= 0) {
 throw (new IllegalArgumentException("qty < zero"));
 }

 mQuantity = qty;

 return (this);
 }

 // Abstract method overrides shown in Step 4c.
}  

 Super class message fields are set by the super class' builder.6

Page of 81 212

eBus Programmer’s Manual

Step 4c: Builder Inner Class Method Overrides
The builder class is required to override the abstract method protected target-class
buildImpl(). This method returns a new target-class instance based on the builder's field settings.

The protected Validator validate(Validator problems) method may the overridden so pre-
build validation may be done. This is necessary to check if required fields are set or that the overall
message configuration is correct. One example is setting one field to a particular value may restrict
another fields setting. This cannot and should not be done in the individual field setters but in the overall
message validation. Multi-field validation is performed using
Validator.requireTrue(BiPredicate<V1, V2>, V1 value1, V2 value2, String
fieldName1, String fieldName2, String message) method.

Note: when using Validator.requireTrue() methods, be sure that the Predicate argument
returns true only if the tested fields are valid. If the predicate returns false, Validator marks the
field(s) as invalid with the given reason.

When an invalid setting is detected add a string value to the problems list succinctly explaining the
problem and, optionally, how to correct the problem.

import net.sf.eBus.messages.ERequestMessage;

public static final class OrderBuilder
 extends ERequestMessage.Builder<CatalogOrder, OrderBuilder> {
 // Constructor shown in Step 4a.

 // Setter methods shown in Step 4b.

 @Override protected CatalogOrder buildImpl() {
 return (new CatalogOrder(this));
 }

 @Override protected Validator validate(Validator problems) {
 // Must call base class validate first.

 return (super.validate(problems)
 .requireNotNull(mOrderId, "orderId")

 .requireNotNull(mPrice, "price")

 .requireTrue(v -> (v > 0),

 mQuantity,

 "quantity",

 Validator.NOT_SET)
 // Total order cost cannot exceed a maximum allowed value.

 .requireTrue(

 (v1, v2) ->

 ((v1.multiply(v2)).compareTo(

 MAX_ALLOWED_VALUE) <= 0),
 mPrice,

 mQuantity,

 "price",

 "quantity",

 "order exceeds maximum allowed value"));

 }

}  

Page of 82 212

Get the Message

Step 5: Message Object Constructor
Message class and builder are tied together by a single private constructor message-class(message-
builder builder) where the constructor initializes its fields from the builder settings. This constructor
is private because only the builder inner classes calls this constructor.

import java.io.Serializable;
import net.sf.eBus.messages.EReplyInfo;
import net.sf.eBus.messages.ERequestMessage;

@EReplyInfo (replyMessageClasses={CatalogOrderReply.class}, mayClose=false)
public final class CatalogOrder
 extends ERequestMessage
 implements Serializable {

 public final String orderId;
 public final Money price; See step 5.
 public final int quantity;
 private static final long serialVersionUID = 1L;

 // Private constructor because only OrderBuilder may call this constructor.

 private CatalogOrder(OrderBuilder builder) {
 super (builder);

 this.orderId = builder.mOrderId;
 this.price = builder.mPrice;
 this.quantity = builder.mQuantity;
 }

}  

Page of 83 212

eBus Programmer’s Manual

Step 6: Message field type definition
eBus allows applications to define data types for message fields. This is done by extending the EField
class and providing the required de-serialization constructor. The code below shows the Money data type
definition. Like an eBus message, all fields must be public final and a supported eBus type.

eBus allows placing a subclass instance into an EField message field. For example, you define an
abstract class AbstractInfo which extends EField. You then use AbstractInfo as a field in your
message CatalogUpdate. You then define a concrete class DetailInfo extending AbstractInfo.
eBus supports placing a DetailInfo instance into CatalogUpdate message. This technique allows
you to update the message CatalogUpdate contents without changing the message class. All you need
to do is create new AbstractInfo subclasses, each containing the desired information.

There is a performance loss using abstract message fields. eBus includes the leaf field class name in the
serialization. The de-serialization code reads in the name and passes it to Class.forName(String)
Using abstract EField subclass slows the message transmission. This is not done when using a
concrete EField subclass as a message field since the field type is fixed.

import java.io.Serializable;
import java.math.BigDecimal;
import net.sf.eBus.messages.EField;
import net.sf.eBus.messages.EFieldInfo;

public final class Money
 extends EField
 implements Serializable {

 public final BigDecimal price;
 public final Currency currency;
 public final int qty;
 private static final long serialVersionUID = 1L;

 public Money(final MoneyBuilder builder) {
 super (builder);

 this.price = builder.mPrice;
 this.currency = builder.mCurrency;
 this.qty = builder.mQty;
 }

 public static MoneyBuilder builder() {
 return (new MoneyBuilder());
 }

 public static final class MoneyBuilder
 extends EField.Builder<Money, MoneyBuilder>
 {

 // This class is defined in the same manner as OrderBuilder.

 }

}

Page of 84 212

Get the Message

Step 7: Complete Message Class
import java.io.Serializable;
import net.sf.eBus.messages.EReplyInfo;
import net.sf.eBus.messages.ENotificationMessage;

@EReplyInfo (replyMessageClasses={CatalogOrderReply.class}, mayClose=false)
public final class CatalogOrder
 extends ERequestMessage
 implements Serializable
{

 // All transported data members must be public, final, and eBus-supported types.

 // Note: Money is a net.sf.eBus.message.EField subclass which stores the price

 // and currency.

 public final String orderId;
 public final Money price;
 public final int quantity;
 private static final long serialVersionUID = 1L;

 // Private constructor because only OrderBuilder may call this constructor.

 private CatalogOrder(OrderBuilder builder) {
 super (builder);

 this.orderId = builder.mOrderId;
 this.price = builder.mPrice;
 this.quantity = builder.mQuantity;
 }

 // This method must be named "builder" and be public static.
 public static OrderBuilder builder() {
 return (new OrderBuilder());
 }

 // Builder class should be public so it can be accessed by all other classes

 // and static because it does not share its owning class' members.

 public static final class OrderBuilder
 extends ERequestMessage.Builder<CatalogOrder, OrderBuilder> {

 // Builder has the same data member as the target class - but not public and

 // final.

 private String mOrderId;
 private Money mPrice;
 private int mQuantity;

 // private constructor so only public static OrderBuilder builder() method can
 // instantiate this class.

 private OrderBuilder() {
 super (CatalogOrder.class);
 }

 public OrderBuilder orderId(String id) {
 if (id == null || id.isEmpty()) {

Page of 85 212

eBus Programmer’s Manual

 throw (new IllegalArgumentException("id is null or empty"));
 }

 mOrderId = id;

 return (this);
 }

 public OrderBuilder price(Money px) {
 if (money == null) {
 throw (new NullPointerException("px is null"));
 }

 mPrice = px;

 return (this);
 }

 public OrderBuilder quantity(int qty) {
 if (qty <= 0) {
 throw (new IllegalArgumentException("qty < zero"));
 }

 mQuantity = qty;

 return (this);
 }

 @Override protected CatalogOrder buildImpl() {
 return (new CatalogOrder(this));
 }

 @Override protected Validator validate(Validator problems) {
 // Must call base class validate first.

 return (super.validate(problems)
 .requireNotNull(mOrderId, "orderId")

 .requireNotNull(mPrice, "price")

 .requireTrue(v -> (v > 0),

 mQuantity,

 "quantity",

 Validator.NOT_SET)
 // Total order cost cannot exceed a maximum allowed value.

 .requireTrue(

 (v1, v2) ->

 ((v1.multiply(v2)).compareTo(

 MAX_ALLOWED_VALUE) <= 0),
 mPrice,

 mQuantity,

 "price",

 "quantity",

 "order exceeds maximum allowed value"));

 }

 }

}

Page of 86 212

Get the Message

Defining an Extendable Field
The above example assumes the user-defined message is final. But what if message or field may be both
instantiated or extended? Then that message or field must provide both an abstract and a concrete
builder. Consider the following user-defined fields:

public class UserInfo
 extends EField
{
 public final String name;
 public final int age;

 private UserInfo(final Builder<?, ?> builder) {
 super (builder);

 this.name = builder.mName;
 this.age = builder.mAge;
 }

 // Builder code shown below.
}

public final class Employee
 extends UserInfo
{
 public final String department;

 private Employee(final Builder builder) {
 super (builder);

 this.department = builder.mDepartment;
 }

 // Builder code show below.
}

Class UserInfo can be instantiated on its own and serves as Employee superclass. This means
UserInfo needs to provide one builder for constructing UserInfo instances and another abstract
builder to server as Employee.Builder superclass. The UserInfo abstract builder is now defined.

public static abstract class Builder<M extends UserInfo,
 B extends Builder<M, ? extends UserInfo.Builder>>
 extends EField.Builder<M, B>
{
 private String mName;
 private int mAge;
 protected Builder(final Class<? extends EMessageObject> targetClass) {
 super (targetClass);

 this.age = -1;
 }
 public B name(final String value) {
 if (value == null || value.isEmpty()) {
 throw (new IllegalArgumentException("value is null or empty"));
 }

 this.mName = value;
 return ((B) this);
 }
 public B age(final int age) {
 if (age < 0) {
 throw (new IllegalArgumentException("age < zero"));
 }

Page of 87 212

eBus Programmer’s Manual

 this.mAge = age;
 return ((B) this);
 }

 @Override protected Validator validate(final Validator problems) {
 return (super.validate(problems)
 .requireNotNull(mName, "name")
 .requireTrue(v -> (v >= 0), mAge, "age", Validator.NOT_SET));
 }
}

Note that unlike a concrete builder an abstract builder must define the M and B class parameters. These
parameters match those in EField.Builder but are restricted to UserInfo and UserInfo.Builder.
The B builder parameter is used to downcast setter method return values to the concrete builder type.
Further the abstract builder does not override buildImpl method because only concrete builders create
the target class instance.

Given this abstract builder the concrete builder is defined as:

public static final class ConcreteBuilder
 extends Builder<UserInfo, ConcreteBuilder>
{
 private ConcreteBuilder() {
 super (UserInfo.class);
 }

 @Override protected UserInfo buildImpl() {
 return (new UserInfo(this));
 }
}

Since the abstract Builder class defines the setters and validation, the only left for ConcreteBuilder
is to define buildImpl. The final code to define is the UserInfo builder method.

public static UserInfo.Builder<?, ?> builder() {
 return (new ConcreteBuilder());
}

A ConcreteBuilder instance is returned because the caller wants to build a UserInfo instance.

The Employee builder extends the abstract UserInfo.Builder class and defines the department
setter method and validate, buildImpl overrides.

public static final class Builder extends UserInfo.Builder<Employee, Builder> {
 private String mDepartment;

 private Builder() { super (Employee.class); }

 public Builder department(final String value) {
 if (value == null || value.isEmpty()) {
 throw (new IllegalArgumentExpression(""));
 }

 this.mDepartment = value;
 return (this);
 }

 @Override protected void validate(final List<String> problems) {
 super.validate(problems);

 if (mDepartment == null) { problems.add("department not set");}
 }

 @Override protected Employee buildImpl() { return (new Employee(this)); }
}

Page of 88 212

Get the Message

Arrays and List Fields
eBus field arrays are homogenous except for File[], BigDecimal[], BigInteger[],
InetAddress[], InetSocketAddress[], EField[], and EMessage[] arrays. The reason the are
heterogenous is because the array types are not marked final. That means an array slot may contain
the array type subclass instance. This is not a problem for BigDecimal and InetAddress since eBus
uses a static valueOf method to de-serialize to the correct target object. But for File, BigInteger,
and InetSocketAddress array types, eBus assumes that the serialized field is of the specified array
type. If the original message field contained a subclass instance, then that instance will not be de-
serialized correctly since the parent class instance will be created and not the subclass.7

This is not the case with EField and EMessage arrays. For EField arrays, eBus serializes the field
class together with the field instance. For EMessage arrays, eBus serializes the message key together
with the message instance. This allows eBus to de-serialize the correct message subclass.

The upside to field and message arrays is that they allow for heterogenous messages to be stored in a
single array. The downside is that such arrays serialize to large sizes (perhaps too large for eBus to
handle) and are slow to de-serialize.

Another downside is that arrays are not immutable. It is possible to put a new value in an array slot post
construction. This violates eBus requirement that a message instance is immutable.

The solution to this is net.sf.eBus.messages.EFieldList and EMessageList introduced in eBus
4.4.0. If an application has an EField subclass Money, then EFieldList<Money> can be used to
transmit zero or more money instances. Likewise EMessageList<CatalogOrder> is used to transmit
zero or more catalog order requests.

The downside is that all fields must be of the same class (Money) and all messages must have the same
message key (the same message class and subject). The upside is that the serialized list takes up far
less space and is faster to de-serialize.

EFieldList and EMessageList are also functionally immutable. The list contents can be modified up
until the list is serialized or de-serialized.Once a field/message list is sent or received, any attempt to
modify the list will result in a thrown UnsupportedOperationException.

 This also applies to a simple File, BigInteger, and InetSocketAddress field as well.7

Page of 89 212

eBus Programmer’s Manual

Local eBus Messages
By default eBus requires all message fields to be serializable. Since eBus does not support 8

java.util.Map it cannot be used as a message field since eBus does not know how to serialize a map
for transmission to another eBus application.

But what if a message is meant for use within a JVM only? That changes things since that message does
not need to be serialized. In that case, add the @ELocalOnly annotation to the message class definition.
Message fields may then be any type desired. Further the message class does not need to define a
public static builder-class builder() method or the builder-class inner class. But
message fields must still be public final.

Note: while the below constructor currently works, ENotificationMessage(String subject,
long timestamp) constructor is deprecated. In the future, local-only messages will be required to use
a builder because ENotificationMessage will only have a builder-based constructor.

import java.util.Collections;
import java.util.HashMap;
import java.util.Map;
import net.sf.eBus.messages.ELocalOnly;
import net.sf.eBus.messages.ENotificationMessage;

@ELocalOnly
public final class LocalMessage
 extends ENotificationMessage
 implements Serializable
{
 // Map is not an eBus-supported type but allowed in this local message.
 public final Map<String, Integer> studentIds;

 private static final long serialVersionUID = 0x1L;

 public LocalMessage(final String subject,
 final long timestamp,
 final Map<String, Integer> ids) {
 super (subject, timestamp);

 studentIds = Collections.unmodifiableMap(new HashMap<>(ids));
 }
}

 See Appendix A for eBus supported field types.8

Page of 90 212

Get the Message

Message Field Annotations
The following annotations may be applied to the specified field data types.

String: @EStringInfo(charset = "charset name", lineCount = n, maximumAllowedSize = n)

eBus uses the java.nio.charset.StandardCharsets.UTF_8 as the default character set to
serialize, de-serialize Java String fields. This default character set can be overridden using the
@EStringInfo annotation for String message fields:

@EStringInfo(charset = "latin1") public final String lastName;

where charset should be a character set name or alias known to
java.nio.charset.Charset.forName method. If forName throws an exception for the given
charset name, then eBus will quietly use UTF_8 instead. No exception will be thrown or error logged.

@EStringInfo has a second attribute lineCount used to specify the number of lines that may be in
the string field. If not defined, the line count defaults to a single line. lineCount is not used by eBus and is
provided solely for application use. One possible use for this attribute is deciding whether to use a
JavaFX TextField to input a single line string field or a TextArea to input a multi-line string field.

The third attribute is used to specify the maximum length allowed for the text field. Field serialization fails
with a BufferOverflowException if the String's length exceeds this value.

Array, EFieldList, EMessageList, BigInteger:
@EArrayInfo(maximumAllowedSize = n)

Specifies the allowed maximum size of the serialized field. If the array or list size exceeds this value, then
field serialization fails with a BufferOverflowException.

All: @FieldDisplayIndex(index = n)
eBus 5.3.2 introduced the annotation @FieldDisplayIndex which is used to define field ordering for
display purposes. The problem is that MessageType.fields() returns fields in serialization order. This
ordering is meant for superior serialization performance but this ordering does not make human sense.
This is corrected by MessageType.displayFields(). The returned field ordering is from base class
EMessageObject fields down to the leaf class. Meaning super class fields are listed first, the leaf
message class last.

Usage: FieldDisplayIndex(index = n) where n >= zero. Field display indices do not have to start
at zero or have to be strictly sequential but must be in increasing order. If multiple field display indices
have the same value, the ordering is undefined among those fields.

Compiling Messages
When an eBus messages is sent across a connection to a remote eBus application, that must be
serialized by the sending application and de-serialized by the receiving application. The code performing
this serialization, de-serialization is generated by eBus as run-time based on the eBus message class.
eBus provides two messages compilers: JavaMessageCompiler and InvokeMessageCompiler.

JavaMessageCompiler uses the javassist package to compile and load a DataType-subclass
generated specifically to serialize, de-serialize an eBus message fields. This technique provides the
fastest and memory-efficient message serialization, de-serialization. That is why it is the default message
compiler.

Page of 91 212

eBus Programmer’s Manual

But if javassist is not available, then use InvokeMessageCompiler. This creates a
InvokeMessageType class instance to serialize, de-serialize a given eBus message class. As the name
implies, InvokeMessageType uses the java.lang.invoke package to access message fields when
serializing and message builder set methods when de-serializing. Changing the message compiler type
must be done by setting the property messageCompiler = JAVA_INVOKE in an eBus configuration file
and then passing that file in the command line option -Dnet.sf.eBus.config.jsonFile=<file>. 

Page of 92 212

Get the Message

Page of 93 212

eBus Programmer’s Manual

Key to eBus
Message keys link eBus roles to eBus messages. A publisher, subscriber, requester, replier clients open a
feed, it specifies a message key. If that key is not already defined in the eBus message key dictionary
when the feed is opened, then it is added to the dictionary. But what message keys are already defined in
the eBus dictionary?

eBus release 4.5.0 makes it possible to both retrieve and add message keys apart from opening EFeeds.
There are two methods provided for added message keys to the dictionary:
EFeed.addKey(EMessageKey) and EFeeds.addAllKeys(Collection<EMessageKeys>). These
methods are needed to initially place message keys into the dictionary. But these methods are slow.

Once the message dictionary is filled out, it can be stored to persistent memory and restored quickly
using the following methods:

EFeed.storeKeys(ObjectOutputStream) Stores the message key dictionary to the given
object output stream. The caller is responsible for correctly opening and closing the stream.
EFeed.storeKeys(Class<? extends EMessage>, ObjectOutputStream) Stores only
those message keys pertaining to a message class to the object output stream.
EFeed.storeKeys(Class<? extends EMessage>, Pattern, ObjectOutputStream)
Stores only those message keys which match the given message class and subject regular
expression.

Once message key dictionary entries are persistent stored, these entries may be restored with the
method EFeed.loadKeys(ObjectInputStream).

Message key dictionary entries can be retrieved using the following methods:

EFeed.findKeys() Returns all message key dictionary entries.

EFeed.findKeys(Class<? extends EMessage>) Returns only those message key
dictionary entries pertaining to the given message class.
EFeed.findKeys(Class<? extends EMessage>, Pattern) Returns only those message
key dictionary entries pertaining to the given message class and whose subjects match the
regular expression pattern.

The reason why a message key dictionary API is added to eBus is to support multi-subject feeds. 

Page of 94 212

Don't Know Much About History

Page of 95 212

eBus Programmer’s Manual

Feed me, Seymour!
Applications interface with eBus through feeds. So far only simple eBus feeds were used. A simple feed
1) contains a single message key, 2) connects a subscriber/requestor to one or more publishers/repliers,
and 3) messages are exchanged only when sent while this connection is active.

eBus v. 4.5.0 begins the process of introducing complex feeds. The first of these new feeds are multi-
subject feeds.

Multi-Subject Feeds
Multi-subject feeds act as a proxy between the application and multiple subordinate simple feeds. The
multi-subject feed is responsible for configuring the subordinate feeds in the same way and keeping them
in the same state: opened, advertised/subscribed, and closed. If new subordinate feeds are added, these
new feeds are brought into the same configuration and state as the existing feeds.

But it is the subordinate simple feeds which interact with the application object. The multi-subject feed
opens a subordinate simple feed, passing in the application object as the feed client. That means the
subordinate feed calls back to the application object. If the application object creates a multi-subject feed
with 1,000 subordinate feeds, then the application object receives callbacks from 1,000 subordinate
feeds.

Multi-subject feeds behave in a similar manner to simple feeds but are not a EFeed subclass like simple
feeds. They are opened, may have callbacks configured, advertised/subscribed, un-advertised/un-
subscribed, and closed. Note the multi-subject feed configures the callback methods for the subordinate
feeds based on how the multi-subject feed is configured. This means that each subordinate feed calls
back to the same method. It is not possible for subordinate feeds belonging to the same multi-subject
feed to call back to different methods.

There are four multi-subject feed types, matching the four simple feeds: EMultiPublishFeed,
EMultiSubscribeFeed, EMultiRequestFeed, and EMultiReplyFeed. The multi-subject feeds also
use the same role interfaces:

Subjects are defined in two ways: using a static List<String> containing the multiple subjects or a
dynamic net.sf.eBus.util.regex.Pattern subject query. When a List is provided, subordinate
feeds are created for each of the listed subjects. When Pattern is provided, the query is matched
against existing subjects for the multi-subject feed's class. A subordinate feed is created for each of the
matching subjects. The reason the subject query is dynamic is that when a new subject is created for the
multi-subject feed's class and that new subject matches the query, a new subordinate feed is created for
that subject with the subordinate feed move to the same state as the existing subordinate feeds.

Multi-Subject Feed Role

EMultiPublishFeed EPublisher

EMultiSubscribeFeed ESubscriber

EMultiRequestFeed ERequestor

EMultiReplyFeed EReplier

Page of 96 212

Feed me, Seymour!

Once a multi-subject feed is open, new subjects can be added or removed. The following methods may
be used to add subjects:

 addFeed(String subject): add a single subject to multi-subject feed.

addAllFeeds(List<String> subjects): add all listed subjects to multi-subject feed.

addAllFeeds(final Pattern query): add all existing subjects matching given pattern to
multi-subject feed.

In each of the above methods, a subject is added only if it is not already in the feed. Conversely, existing
feeds may be removed and closed using these methods:

closeFeed(String subject): close subordinate feed with the given subject.

closeAllFeeds(List<String> subjects): close all subordinate feeds for the given
subjects.
closeAllFeeds(Pattern query): close all subordinate feeds with subjects matching the
given query.

Since multi-subject feeds behave like their simple feed equivalents, the following code sample shows how
to use an EMultiReplyFeed. This includes opening, configuring callback methods using lambda
expressions, advertise, handle requests, add new subordinate feeds, and close the multi-subject reply
feed. Please note the similarity between the EReplyFeed and EMultiReplyFeed code.

import java.util.ArrayList;
import java.util.List;
import net.sf.eBus.client.EFeed.FeedScope;
import net.sf.eBus.client.EMultiReplyFeed;
import net.sf.eBus.client.EReplier;
import net.sf.eBus.messages.EReplyMessage
import net.sf.eBus.messages.EReplyMessage.ReplyStatus;
import net.sf.eBus.messages.ERequestMessage;

public class CatalogReplier
 implements EReplier
{

 private final List<String> mSubjects;
 private final FeedScope mScope;
 private EMultiReplyFeed mFeed;
 private final List<EReplyFeed.ERequest> mRequests;

 public CatalogReplier(final List<String> subjects, final FeedScope scope) {
 mSubjects = subjects;

 mScope = scope;

 mFeed = null;
 mRequests = new ArrayList<>();
 }

 @Override public void startup() {
 try {
 // This advertisement has no associated ECondition.

 // Use private methods to handle requests and cancels.

Page of 97 212

eBus Programmer’s Manual

 mFeed =

 (EMultiReplyFeed.builder()).target(this)

 .scope(mScope)

 .messageClass(com.acme.CatalogOrder.class)
 .subjects(mSubjects)

 .requestCallback(this::handleRequest)
 .cancelRequestCallback(this::handleCancel)
 .build();

 mFeed.advertise();

 mFeed.updateFeedState(EFeedState.UP);

 } catch (Exception jex) {
 // Advertisement failed. Place recovery code here.

 }

 }

 private void handleRequest(final EReplyFeed.ERequest request,
 final IEReplyFeed feed) {
 final ERequestMessage msg = request.request();

 try {
 mRequests.add(request);

 startOrderProcessing(msg, request);

 } catch (Exception jex) {
 request.reply(new CatalogOrderReply(ReplyStatus.ERROR, // reply status.
 jex.getMessage())); // reply reason.

 }

 }

 private void handleCancel(final EReplyFeed.ERequest request,
 final IEReplyFeed feed) {
 // Is this request still active? It is if the request is listed.

 if (mRequests.remove(request)) {
 // Yes, try to stop the request processing.

 try {
 // Throws an exception if the request cannot be stopped.

 stopOrderProcessing(request)

 } catch (Exception jex) {
 // Ignore since nothing else can be done.

 }

 }

 }

 public void orderReply(final EReplyFeed.ERequest request,
 final boolean status,
 final String reason) {
 final ERequestAd ad = mRequests.get(request);

 if (mRequests.contains(request) && request.isActive()) {
 request.reply(new OrderReply(status, reason), ad);

Page of 98 212

Feed me, Seymour!

 // If the request processing is complete, remove the request.

 if (status.isFinal()) {
 mRequests.remove(request);

 }

 }

 }

 // Adds a new subordinate feed for the given subject.

 public void openSubject(final String subject) {
 mFeed.addFeed(subject);

 }

 // Closes an existing feed for the given subject.

 public void closeSubject(final String subject) {
 mFeed.closeFeed(subject);

 }

 @Override public void shutdown() {
 final String subject = mKey.subject();
 EReplyMessage reply;

 // While eBus will does this for us, it is better to do it ourselves.

 for (EReplyFeed.ERequest request : mRequests) {
 reply = new EReplyMessage(subject, ReplyStatus.ERROR, "shutting down");
 request.reply(reply);

 }

 mRequests.clear();

 if (mFeed != null) {
 mFeed.close();

 mFeed = null;
 }

 }

}

Page of 99 212

eBus Programmer’s Manual

Pattern Feed
eBus v. 4.6.0 introduces pattern feeds. A pattern feed watches one or more notification feeds and reports
a MatchEvent when events arriving on the notification feed(s) match the given pattern. The best way to
explain how this works is through example.

A stock market algorithm reacts to the following trade pattern occurs in stock ABCD:

1. The pattern starts with a order quantity > 1,000 shares or the currently lowest priced trade.
2. Followed by 4 or more trades that is at a price > the average price of all previous trades

(since this pattern match began). The quantity may increase or slowing decrease.
3. The pattern ends when the traded quantity is < 0.8 x the previously traded quantity.
4. The time difference between the first and last trade must ≤ 1 hour.
5. Events which are used for one match may not be used in another match. In other words,

there is no intersection between event sets for any two matches from the same patternI.
Exclusivity does not hold across patterns.

An eBus pattern is created using an EventPattern.Builder. A pattern consists of two parts: 1)
notification feed(s) (known as pattern parameters or just parameters) and 2) the pattern. Parameters may
be either built or provided to the pattern builder as a java.util.Map. The following example builds the
parameters. A later example shows how to create a pattern parameter map.

Event patterns come in two flavors: ordered and unordered. This example is ordered since the events
must arrive in a specified order. An unordered example is provided here.

Ordered Pattern
Building an event pattern follows these five steps:

1. Open the pattern builder with the pattern name, type (ordered or unordered), and (optional)
parameter map.

2. Define the pattern parameters if a parameter map was not provided.
3. Define the pattern itself.
4. Define the optional until condition and whether this is an exclusive pattern.
5. Build the event pattern.

Page of 100 212

Feed me, Seymour!

import net.sf.eBus.client.EventPattern;
import net.sf.eBus.client.EventPattern.PatternType;
import net.sf.eBus.messages.EMessageKey;

final String ticker = “ABCD”;
final String orderParam = “ord”;
final String tradeParam = “trd”;
final String group = “g0”;
final EventPattern.Builder builder =

 EventPattern.builder(“ABCDTradeBlip”, PatternType.ORDERED); 1
final EventPattern tradeBlip =

 builder.beginParameterMap() 2
 .beginParameter(orderParam) 3
 .messageKey(new EMessageKey(OrderMessage.class, ticker)) 4
 .scope(FeedScope.REMOTE_ONLY) 5
 .endParameter() 6
 .beginParameter(tradeParam) // Define the “trd” parameter second.
 .messageKey(new EMessageKey(TradeMessage.class, ticker))
 .scope(FeedScope.REMOTE_ONLY)
 .endParameter()

 .endParameterMap() 7
 // Define the event pattern next.
 // Match 0: order quantity > 1,000 shares OR low trade.

 .beginMultiComponent() 8
 .matchCount(1, 1) 9
 .addSubordinate(orderParam, 10
 (e, g, u) -> { 11
 final OrderMessage ord = (OrderMessage) e;
 final boolean retcode = (ord.size > 1_000);

 // If this event passes the test, then start adding up
 // the trade prices to calculate the average price.
 if (retcode) {

 u.put("sum", ord.price); 12
 u.put("count", BigDecimal.ONE);
 }

 return (retcode); 13
 })
 .addSubordinate(tradeParam,
 (e, g, u) -> {
 final TradeMessage trd = (TradeMessage) e;
 final boolean retcode =
 (trd.tradeType == PriceType.LOW)

 if (retcode) {
 u.put("sum", ord.price);
 u.put("count", BigDecimal.ONE);
 }

 return (retcode);
 })

Page of 101 212

eBus Programmer’s Manual

 .endMultiComponent() // Match 0: multi-component defined. 14
 // Match 1: 4 or more trades with increasing price.

 .beginGroup(group) 15
 .beginSingleComponent(tradeParam) 16
 .matchCount(4, Integer.MAX_VALUE) 17
 .matchCondition((e, g, u) -> {
 final TradeMessage trd = (TradeMessage) e;
 final BigDecimal trdPx = (trd.trade).price;
 final BigDecimal pxSum = (BigDecimal) u.get("sum");
 final BigDecimal numTrades = (BigDecimal) u.get("count");

 final BigDecimal avgPx = 18
 pxSum.divide(numTrades, scale, RoundingMode.DOWN);
 final boolean retcode = (trdPx.compareTo(avgPx) > 0);

 // If this trade met the condition, then add price to sum.
 if (retcode) { 19
 u.put("sum", pxSum.add(trdPx));
 u.put("count", numTrades.add(BigDecimal.ONE));
 }

 return (retcode);
 })

 .endSingleComponent() 20
 .endGroup(group) 21
 // Match 2: trade quantity drops.
 .beginSingleComponent(tradeParam)
 .matchCondition((e, g, u) -> {
 final int qty = (((TradeMessage) e).trade).size;
 final List<ENotificationMessage> trades =
 g.get(EventPattern.ALL_EVENTS);
 final TradeMessage latest =
 (TradeMessage) trades.get(trades.size() - 1);
 final int dropQty = (int) (0.8 * (latest.trade).size);

 return (qty < dropQty);
 })
 .endSingleComponent()

 .until((t, e) -> { 22
 final boolean retcode;

 if (t.isEmpty()) {
 retcode = true;
 } else {
 final TradeMessage first = (TradeMessage) t.get(0);
 final long duration = (e.timestamp - first.timestamp);

 retcode = (duration <= COMPLEX_TIME_LIMIT);
 }

 return (retcode);
 })

 .isExclusive(true) 23
 .build(); 24

Page of 102 212

Feed me, Seymour!

1. Create an event pattern builder first. The first argument is the pattern name which is used as the
MatchEvent subject. The second argument is the pattern type (ordered or unordered).

2. builder.beginParameterMap() starts the event pattern parameter definition(s).

3. builder.beginParameter(String) starts defining a single event parameter.

4. builder.messageKey(EMessageKey) defines the parameter notification message key. This is
required for all parameters.

5. builder.scope(EFeed.FeedScope) defines the message feed scope. This is required for all
parameters.

6. builder.endParameter() signals the end of the current parameter definition.

7. builder.endParameterMap() signals the end of all parameter definitions.

8. builder.beginMultiComponent() plays the same role as java.util.regex.Pattern
character classes: it allows one of several events to appear at this point in the pattern match.

9. builder.matchCount(n, m) applies to the entire multi-component and may not be specified
subordinate single events. Note that builder.matchCount(1, 1) is the default and did not
need to be specified.

10. builder.addSubordinate(param, condition) adds a new single event to the multi-
component. Please note that a parameter may appear multiple times as a subordinate as long as
each appearance has a different condition. 
builder.addSubordinate(param) may be used to add a subordinate multi-component event
without a condition.

11. MatchCondition.test() method interface has three parameters: (e, g, u) where: 
e is the latest event received which is to be tested for acceptability. 
g is the capturing groups map (capturing groups are explained in note 15). This map does not
contain e since g contains only successfully matched events and e is not yet matched. 
u is the user cache map defined as Map<Object, Object>. This is explained in the next point.

12. eBus event patterns allow the user to store or cache its own information associated with a given
match instance. This cache is carried along a particular match and provided to
MatchCondition.test() implementations and in the ultimate MatchEvent if the pattern is
successfully matched. If the match fails, then the user cache instance is lost. Note that this user
cache is unique to a given match and may not be shared between different matchings. 
eBus makes no limitations on what objects may be used as map keys or values. That is left
entirely up to the user. 
In this example the user is storing a running sum of trade prices and trade count which are used
later to calculate the average trade price - which is needed in later match condition tests.

13. Returning true means that event e is accepted and the match may continue. Returning false
causes this match instance to fail and be removed from further consideration.

14. The multi-event component is now defined.
15. Users may defined named capturing groups in eBus patterns. The events which are accepted

between builder.beginGroup(name) and builder.endGroup(name) are stored in the
group map under the key name in the List<ENotificationMessage> value. Events are
stored in acceptance order.

Page of 103 212

eBus Programmer’s Manual

16. The second event component matches against a single event parameter "trd".
17. builder.matchCount(1, Integer.MAX_VALUE) states the event must appear at least four

times in a row to match the pattern.
18. The match condition retrieves the price summation and matched event count from the user cache

in order to calculate the average trade price.
19. If event e satisfies the condition, then price summation and match event count updates are

placed back into the user cache.
20. builder.endSingleComponent() closes off the single event component definition.

21. builder.endGroup(group) closes the named capturing group. Note that the group name
needs is provided because capturing groups may be interleaved. This means that capturing
groups may be opened and closed as follows: beginGroup("g0"), beginGroup("g1"),
endGroup("g0"), endGroup("g1").

22. builder.until(BiPredicate<List<ENotificationMessage>,

ENotificationMessage>) condition must return true for the pattern to continue. The
condition takes two parameters: matched events list and latest, unmatched event. The idea is that
the pattern is valid only if an overall condition continues to hold. Often this condition checks if the
first matched event and the latest event are within a fixed time frame but the check is not limited
to duration.

23. builder.isExclusive(true) means that events in a successful match may not be used in
another match for the same pattern. When an exclusive pattern matches, then all other in
progress matches are disposed. Exclusivity does not apply across patterns. This means that an
event may be used in multiple matches across multiple patterns.

24. builder.build() generates the EventPattern instance based on the previous
configuration.

Unordered Pattern
The next example shows how to define an unordered pattern. This pattern specifies how many events of
each type must be collected to match the pattern. These events may arrive in any order. The only thing
that matters is the number of events.

The following looks for at 5 consecutive orders and trades demonstrating a price rise and there must be
at least one order and one trade. This example uses the same parameter map as used in the ordered
pattern example.

Note: this example assumes the same parameters as the ordered pattern example. Assume the pattern
parameters are already defined.

Page of 104 212

Feed me, Seymour!

builder.beginSingleComponent("ord")

 .matchCount(1, 4) 1
 .endSingleComponent()
 .beginSingleComponent("trd")

 .matchCount(1, 4) 1
 .endSingleComponent()

 .until((t, e) -> (t.size() < 6)) 2
 .patternCondition(3
 p -> {

 final List<ENotificationMessage> events = 4
 p.group(EventPattern.ALL_EVENTS);

 // containsClass() returns true if the list contains at least one
 // instance of the class.
 final boolean hasOrder = containsClass(OrderReport.class, events);
 final boolean hasTrade = containsClass(EquityTrade.class, events);

 return (events.size() == 5 && hasOrder && hasTrade);
 }

 .build(); 5

1. There must be between and four (inclusive) order or trade events. This allows the fifth event to be
the other event type.

2. The pattern look for exactly five events. The pattern is invalid on the sixth event.

3. builder.patternCondition(Predicate<MatchEvent>) defines the final pattern check
before delivering the MatchEvent to the subscriber. If Predicate.test(MatchEvent)
returns true, the match event is delivered; otherwise the match is dropped and the pattern
continues searching.

4. MatchEvent.group(String groupName) returns the named capturing group’s
List<ENotificationMessage>. Even if a pattern has no explicitly defined capturing groups,
the capturing group map always has an entry EventPattern.ALL_EVENTS which contains all
matched events from first to last in acceptance order.

5. builder.build() returns the EventPattern based on the above configuration. Note that this
pattern is not exclusive. This allows an event to satisfy multiple matching in the same pattern.

Page of 105 212

eBus Programmer’s Manual

Defining Parameter Maps
If multiple event parameters are based on the same parameters, then defining a parameter map once for
all patterns is desirable. The map definition is Map<String, EventPattern.FeedInfo> where
the String key is the parameter name used in the preceding example and the FeedInfo defines
the ESubscribeFeed. The parameter map definition is similar to the
previous EventPattern.Builder example:

// All parameters use the new word feed.
final EMessageKey orderKey = new EMessageKey(OrderReport.class, "ACME");
final EMessageKey tradeKey = new EMessageKey(EquityTrade.class, "ACME");
final Map<String, EventPattern.FeedInfo> params = new HashMap<>();

// Defining "ord" parameter.

params.put("ord", 1
 new EventPattern.FeedInfo(orderKey, 2
 EFeed.FeedScope.REMOTE_ONLY)); 3
 4

// Defining "trd" parameter.
params.put("trd",
 new EventPattern.FeedInfo(tradeKey,
 EFeed.FeedScope.REMOTE_ONLY));

// Create builder using the parameter map. The precludes the need for
// builder.beginParameterMap(), builder.endParameterMap().
final EventPattern.Builder builder =
 EventPattern.builder(“Trade Blip", EventPattern.PatternType.ORDERED, params);

1. Pattern map key is the parameter name string.

2. Define ESubscribeFeed’s EMessageKey (required).

3. Define ESubscribeFeed’s EFeed.FeedScope (required).

4. An ESubscribeFeed ECondition may be defined but is not provided in this example.

Page of 106 212

Feed me, Seymour!

Subscribing to an Event Pattern Feed
Once the EventPattern is defined, the EPatternFeed can be opened and handled just like an
ESubscribeFeed. The following is the previous ESubscriber example updated to work with a
EPatternFeed.

import net.sf.eBus.client.EFeed.FeedScope;
import net.sf.eBus.client.EFeedState;
import net.sf.eBus.client.EPatternFeed;
import net.sf.eBus.client.ESubscriber;
import net.sf.eBus.client.EventPattern;
import net.sf.eBus.client.IESubscribeFeed;
import net.sf.eBus.messages.EMessageKey;
import net.sf.eBus.messages.ENotificationMessage;

public class TradeBlipSubscriber
 implements ESubscriber
{

 // Pattern for the feed.

 private final EventPattern mPattern;

 // Store the feed here so it can be used to unsubscribe.

 private EPatternFeed mFeed;

 // ABCDTradeBlip ordered pattern created by caller and passed in.

 public CatalogSubscriber(final EventPattern pattern) {
 mPattern = pattern;

 mFeed = null;
 }

 @Override public void startup() {
 try {
 // Pattern feed only needs two parameters.

 mFeed = (EPatternFeed.builder()).target(this)
 .eventPattern(mPattern)

 .build();

 mFeed.subscribe();

 } catch(IllegalArgumentException argex) {
 // Feed open failed. Place recovery code here.

 }

 }

 @Override public void feedStatus(final EFeedState feedState,
 final IESubscribeFeed feed) {
 // What is the feed state?

 if (feedState == EFeedState.DOWN) {
 // Down. There are no publishers. Expect no notifications until a

 // publisher is found. Put error recovery code here.

Page of 107 212

eBus Programmer’s Manual

 } else {
 // Up. There is at least one publisher. Expect to receive notifications.

 }

 }

 @Override public void notify(final ENotificationMessage msg,
 final IESubscribeFeed feed) {
 msg is a net.sf.eBus.client.MatchEvent instance. Contains a trade blip match.

 }

 @Override public void shutdown() {
 // mFeed.unsubscribe() is not necessary since close() will unsubscribe.

 mFeed.close();

 mFeed = null;
 }

}  

Page of 108 212

Feed me, Seymour!

Feed Interfaces
eBus v. 4.5.2 introduces four interfaces: IEPublishFeed, IESubscribeFeed, IERequestFeed, and
IEReplyFeed. These interfaces contain method declarations common to the single- and multi-subject
feeds. For example, IESubscribeFeed defines:

void subscribe()
void unsubscribe()
void statusCallback(FeedStatusCallback<ESubscribeFeed>)
void notifyCallback(NotifyCallback)

Since IESubscribeFeed extends IEFeed, the following method declarations are also included:

EFeed.FeedScope scope()
boolean isActive()
boolean inPlace()
boolean isFeedUp()
void close()

The single- and multi-subject feeds now implement their corresponding interface. This allows an
application to store a feed reference using the interface. This is most helpful when an eBus client opens a
mix of single- and multi-subject subscriptions. These subscription feeds can stored in a
List<IESubscribeFeed>.

Page of 109 212

eBus Programmer’s Manual

Don't Know Much About History 9

eBus v. 6.3.0 introduces the net.sf.eBus.feed.historic package containing
EHistoricPublishFeed and EHistoricSubscribeFeed. An historic publish feed works for an
IEHistoricPublisher instance and uses an IEMessageStore instance to both persist and retrieve
notification messages for a given type+topic message key. An historic subscribe feed retrieve past and/or
live notification messages for an IEHistoricSubscriber.

The historic publish and subscribe feeds are examples of eBus hybrid objects. The historic publish feed is
owned by an IEHistoricPublisher instance and runs in that owner's dispatcher. In turn the historic
publish feed implements the EPublisher and EReplier interfaces. The EPublisher implementation
is for posting live notification message to subscribers. The EReplier implementation is for responding to
HistoricRequest messages. The historic notification message request contains an
net.sf.eBusx.time.EInterval time interval. The historic publish feed retrieves those notification
messages matching the time interval and sends them back in one or more HistoricReply messages
(an historic reply contains a fixed number of notifications).

The historic subscribe feed is owned by an IEHistoricSubscriber instance and runs in that owner's
dispatcher. In turn the historic subscribe feed implements the ESubscriber and ERequestor
interfaces. The ESubscriber implementation is for receiving live notification messages. The
ERequestor implementation is for requesting past notification messages.

Note that the historic publish and subscribe feeds do not implement the generic IEPublishFeed or
IESubscribeFeed interfaces due to the fact they are hybrid objects which use the generic eBus
interfaces.

Note that IESubscribeFeed may access live notification messages published by an
EHistoricPublishFeed. Conversely EHistoricSubscribeFeed may access live notification
messages published by an IEPublishFeed.

The steps for using historic feeds are shown below. 

 From the lyrics of "Wonderful World" by Sam Cooke, Lou Adler, and Herb Alpert9

Page of 110 212

Don't Know Much About History

IEHistoricPublisher
Step 1: Implementing an historic publisher
An application can publish messages which are both published live (if there are any active subscribers)
and persisted to a message store by first implementing the
net.sf.eBus.feed.historic.IEHistoricPublisher interface.

Note: historic feeds are dependent on publishers being given a unique 8-byte identifier in order to
distinguish between notification message stream sources.

Note: Previous code is not show in subsequent steps. Go here to see the complete code.

Page of 111 212

eBus Programmer’s Manual

import net.sf.eBus.feed.historic.IEHistoricPublisher;

public class CatalogPublisher
 implements IEHistoricPublisher
{
 // Unique publisher identifier used to distinguish this publisher within the
 // application.
 private final long mPublisherId;

 // Returns unique publisher identifier. This identifier must be placed in all
 // outbound notification messages.
 @Override public long publisherId() {
 return (mPublisherId);
 }

 // This callback is that same as in EPublisher and is provided as a courtesy only
 // since the underlying historic publish feed tracks when a live message may be
 // published.
 // Default interface implementation does nothing. Therefore this implementation is
 // not needed.
 @Override public void publishStatus(final EFeedState feedState,
 final EHistoricPublishFeed feed)
 {}
}

Page of 112 212

Don't Know Much About History

Step 2: Implementing a message store
This class is used to persist an outbound notification message and retrieve stored notification messages
upon an historic subscribe feed's request. This message store needs to store both the target notification
message and net.sf.eBus.feed.historic.PublishStatusEvent notification message.
PublishStatusEvent tracks when an historic publisher's notification feed transitions between being
down (or unknown) to up. This allows a subscriber to determine when there is a break in the publisher's
notification message stream.

This manual does not cover how a message store may be implemented. It could use an OS flat file,
relational database, NOSQL store, time series database, etc. It is also up to the implementation on how to
store a notification message in the target persistent store.

Note: a message store instance may be shared among multiple historic notification publish feeds. But the
message store implementation is responsible for providing thread-safe persistence and retrieval.

See Message Store for two message store implementations provided in eBus release 7.2. 

Page of 113 212

eBus Programmer’s Manual

import net.sf.eBus.feed.historic.IEMessageStore;

public class CatalogStore
 implements IEMessageStore
{
 // Returns true if this message store is open and false otherwise.
 @Override public boolean isOpen() {
 …
 }

 // Persists given message to store. May be target message or PublishStatusEvent.
 @Override public void store(final ENotificationMessage msg) {
 …
 }

 // Returns collection containing both target notification and PublishStatusEvent
 // messages covering the given time interval.
 @Override public Collection<ENotificationMessage> retrieve(final EInterval iv) {
 …
 }
}

Page of 114 212

Don't Know Much About History

Step 3: Opening, starting, and advertising an historic publish feed
Historic publish feeds are opened using EHistoricPublishFeed.Builder instance. This builder
instance is acquired using the static method EHistoricPublishFeed.builder(EMessageKey key,
IEHistoricPublisher publisher) where key is the notification type+topic message key and
publisher is the historic publisher instance. This builder is then used to create an open historic publish
feed:

final EHistoricPublishFeed.Builder builder =
 EHistoricPublishFeed.builder(key, publisher);

pubFeed = builder.name(publisher name)
 .scope(scope)
 .messageStore(message store)
 .notificationsPerReply(num messages)
 .build();

where:

publisher name is an optional name placed into feed log messages.

scope is the feed scope (local only, remote only, or local+remote).

message store is used to persist and retrieve notification messages.

num messages is the maximum number of retrieved notification messages placed in an
HistoricReply message. This means that an historic publisher may need to post multiple replies to
cover all retrieved notifications.

The second step is to start up the historic publish feed. This is necessary since
EHistoricPublishFeed is itself an EObject instance. Since the historic publish feed operates within
the historic publisher's dispatcher, this is acceptable:

pubFeed.startup();

The third step is to advertise your EHistoricPublishFeed to historic subscribers:

pubFeed.advertise();

The fourth step is to inform historic subscribers that the feed is up:

pubFeed.updateFeedState(EFeedState.UP);

The historic publish feed state must be declared as up prior to publishing any target notification
messages. Failure to do so results in EHistoricPublishFeed.publish(ENotificationMessage)
throwing an IllegalStateException. 

Page of 115 212

eBus Programmer’s Manual

import net.sf.eBus.client.EFeed.FeedScope;
import net.sf.eBus.client.EFeedState;
import net.sf.eBus.feed.historic.EHistoricPublishFeed;
import net.sf.eBus.feed.historic.IEHistoricPublisher;
import net.sf.eBus.messages.EMessageKey;

public class CatalogPublisher
 implements IEHistoricPublisher
{
 // Unique publisher identifier.
 private final long mPublisherId;

 // Publishes this notification message class/subject key.

 private final EMessageKey mKey;

 // Published messages remain within this scope.

 private final FeedScope mScope;

 // Persistent message store.

 private final IEMessageStore mStore;

 // Advertise and publish on this feed.

 private EHistoricPublishFeed mFeed;

 // Current message position.

 private int mPosition;

 public CatalogPublisher(final long pubId,
 final String subject,
 final FeedScope scope,
 final IEMessageStore ms) {
 mPublisherId = pubId;

 mKey = new EMessageKey(CatalogUpdate.class, subject);
 mScope = scope;

 mStore = ms;

 }

 @Override public void startup() {
 try {
 final EHistoricPublishFeed.Builder builder =
 EHistoricPublishFeed.builder(mKey, this);

 mFeed = builder.scope(mScope)
 .messageStore(mStore)
 .notificationsPerReply(20)
 .build();
 mFeed.startup();
 mFeed.advertise();
 mFeed.updateFeedState(EFeedState.UP);
 } catch (Exception jex) {
 // Failed to start historic publish feed. Place recovery code here.
 }
 }

 @Override public void shutdown() {
 Shown in step 5.
 }
}

Page of 116 212

Don't Know Much About History

Step 4: Publishing
Once an historic publish feed is successfully opened, started, advertised, and feed state is set to up, an
historic publisher is free to start posting notification messages. The historic publisher does not need to
wait for active subscribers to arrive. This allows notification messages to be persisted in the absence of
subscribers.

Publishing notification messages is the same as with an IEPublishFeed except:

The notification message publish identifier must be set and must match the value returned by
EHistoricPublisher.publisherId().

Publisher is strongly encouraged to set notification message position value since historic notification
messages are sorted by ENotificationMessage.timestamp,
ENotificationMessage.publisherId, and ENotificationMessage.position before
delivery to historic subscriber. Since the message timestamp field has millisecond granularity, if the
publisher posts multiple messages per millisecond, the position is needed to properly order historic
messages.

Page of 117 212

eBus Programmer’s Manual

import java.time.Instant;

public class CatalogPublisher
 implements IEHistoricPublisher
{
 // Roll over message position to zero when position reaches 1,000.
 private static final int MAX_POSITION = 1_000;

 public void updateProduct(final String productName,
 final Money price,
 final int stockQty) {
 // Is the feed open and in place?
 if (mFeed != null && mFeed.isFeedUp()) {
 // Yes, clear to send a catalog update.
 mFeed.publish((CatalogUpdate.builder()).subject(mKey.subject())
 .timestamp(Instant.now())
 .publishId(mPublisherId)
 .position(mPosition)
 .productName(productName)
 .price(price)
 .stockQty(stockQty)
 .build());

 ++mPosition;
 if (mPosition == MAX_POSITION) {
 mPosition = 0;
 }
 }
 }
}

Page of 118 212

Don't Know Much About History

Step 5: Unadvertising the publisher
A publisher has three ways to let eBus know that it will no longer be publishing messages on the feed:

1. EHistoricPublishFeed.updateFeedState(EFeedState.DOWN): This tells eBus that the
publisher is temporarily unable to publish notifications on this feed but may resume in the future (after
setting the feed state to up). The feed remains advertised and available to subscribers. The historic
publish feed sends a PublishStatusEvent with the publisher identifier and feed state set
appropriately.

2. EHistoricPublishFeed.unadvertise(): Publisher is retracting the live notification feed and
subscribers will no long receive live notifications from this historic publisher. The historic notification
reply feed remains advertised and historic subscribers can still retrieve past notifications. The historic
publisher may advertise the live notification feed again and does not need to open a new feed. Historic
subscribers are informed that the publisher state is unknown.

3. EHistoricPublishFeed.shutdown(): Publisher is permanently closing the historic publish feed.
Publisher feed state is set to unknown (if not already set to that value). Once closed, the historic
publish feed may not be used again. If the historic publisher intends to publish again, then a new
historic publish feed must be opened and used.

Note: Historic publish feeds maintain a strong reference to its historic publisher. Since an historic
publisher should not share its historic publish feed reference with objects outside the publisher, the
circular reference between historic publisher and historic publish feed will not prevent garbage collection
of these objects. 

Page of 119 212

eBus Programmer’s Manual

public class CatalogPublisher
 implements IEHistoricPublisher
{
 // Retract historic notification feed.
 if (mFeed != null) {
 // unadvertise() unnecessary since shutdown() retracts in-place advertisement.
 mFeed.shutdown();
 mFeed = null;
 }
}

Page of 120 212

Don't Know Much About History

Step 6: Complete historic publisher code
import java.time.Instant;
import net.sf.eBus.client.EFeed.FeedScope;
import net.sf.eBus.client.EFeedState;
import net.sf.eBus.feed.historic.EHistoricPublishFeed;
import net.sf.eBus.feed.historic.IEHistoricPublisher;
import net.sf.eBus.messages.EMessageKey;

public class CatalogPublisher
 implements IEHistoricPublisher
{
 // Roll over message position to zero when position reaches 1,000.
 private static final int MAX_POSITION = 1_000;

 // Unique publisher identifier.
 private final long mPublisherId;

 // Publishes this notification message class/subject key.

 private final EMessageKey mKey;

 // Published messages remain within this scope.

 private final FeedScope mScope;

 // Persistent message store.

 private final IEMessageStore mStore;

 // Advertise and publish on this feed.

 private EHistoricPublishFeed mFeed;

 // Current message position.

 private int mPosition;

 public CatalogPublisher(final long pubId,
 final String subject,
 final FeedScope scope,
 final IEMessageStore ms) {
 mPublisherId = pubId;

 mKey = new EMessageKey(CatalogUpdate.class, subject);
 mScope = scope;

 mStore = ms;

 }

 @Override public void startup() {
 try {
 final EHistoricPublishFeed.Builder builder =
 EHistoricPublishFeed.builder(mKey, this);

 mFeed = builder.scope(mScope)
 .messageStore(mStore)
 .notificationsPerReply(20)
 .build();
 mFeed.startup();
 mFeed.advertise();
 mFeed.updateFeedState(EFeedState.UP);
 } catch (Exception jex) {
 // Failed to start historic publish feed. Place recovery code here.
 }

Page of 121 212

eBus Programmer’s Manual

 }

 @Override public void shutdown() {
 if (mFeed != null) {
 mFeed.close();
 mFeed = null;
 }
 }

 public void updateProduct(final String productName,
 final Money price,
 final int stockQty) {
 // Is the feed open and in place?
 if (mFeed != null && mFeed.isFeedUp()) {
 // Yes, clear to send a catalog update.
 mFeed.publish((CatalogUpdate.builder()).subject(mKey.subject())
 .timestamp(Instant.now())
 .publishId(mPublisherId)
 .position(mPosition)
 .productName(productName)
 .price(price)
 .stockQty(stockQty)
 .build());

 ++mPosition;
 if (mPosition == MAX_POSITION) {
 mPosition = 0;
 }
 }
 }
}

Page of 122 212

Don't Know Much About History

IEHistoricSubscriber
Step 1: Implementing an historic subscriber
Every application wishing to place historic notification subscriptions must implement
net.sf.eBus.feed.historic.IESubscriber interface.

Note: previous code is not shown in subsequent steps. Go here to see the complete code. 

Page of 123 212

eBus Programmer’s Manual

import net.sf.eBus.feed.historic.EHistoricSubscribeFeed;
import net.sf.eBus.feed.historic.EHistoricSubscribeFeed.HistoricFeedState;
import net.sf.eBus.messages.ENotificationMessage;

public class CatalogSubscriber
 implements IEHistoricSubscriber
{
 @Override public void feedDone(final HistoricFeedState feedState,
 final EHistoricSubscribeFeed feed) {
 See step 5.
 }

 @Override public void feedStatus(final PublishStatusEvent event,
 final EHistoricSubscribeFeed feed) {
 See step 3.
 }

 @Override public void notify(final ENotificationMessage msg,
 final EHistoricSubscribeFeed feed) {
 See step 4.
 }
}

Page of 124 212

Don't Know Much About History

Step 2: Opening, starting and subscribing historic feed
Historic subscribe feed allows an historic subscriber to access notification messages published in the past
and on to a future time. This example retrieves past notification messages at an inclusive begin time and
into the future to an exclusive end time.

The first step is opening the historic subscribe feed:

final EHistoricSubscribeFeed.Builder builder =
 EHistoricSubscribeFeed.builder(key, subscriber);

subFeed = builder.name(subscriber name)
 .scope(scope)
 .condition(condition)
 .from(begin time, begin clusivity)
 .to(end time, end clusivity)
 .build();
where:

key is the message key containing the notification message key and subject.

subscriber is the EHistoricSubscriber instance owning the historic subscribe feed.

subscriber name is used for logging purposes only. This property is optional.

scope is the feed scope.

condition is the optional condition used to restrict delivered notification messages (both past and
live) to those which satisfy the condition.

begin time must be a time in the past. If the historic subscribe feed should start with the current
time, then call builder.fromNow().

begin clusivity is set to either EInterval.Clusivity.INCLUSIVE or
EInterval.Clusivity.EXCLUSIVE.

end time may be in the past or future. If in the past, then only historic notification messages are
sent to the historic subscriber. If in the future, then the historic subscribe feed terminates when the
end time is reached.

end clusivity is set to EInterval.Clusivity.INCLUSIVE or
EInterval.Clusivity.EXCLUSIVE.

The second step starts the historic subscribe feed:

subFeed.startup();

The second step puts the subscription in place:

subFeed.subscribe();

This begins the process of retrieving historic notification messages and receiving live messages.

Note: EHistoricSubscribeFeed attempts to guarantee that there are no redundant or missing notification
messages in its feed stream, this result is not guaranteed. 

Page of 125 212

eBus Programmer’s Manual

import java.time.Instant;
import net.sf.eBus.client.EFeed.FeedScope;
import net.sf.eBus.messages.EMessageKey;
import net.sf.eBus.messages.ENotificationMessage;
import net.sf.eBusx.time.EInterval.Clusivity;

public class CatalogSubscriber
 implements IEHistoricSubscriber
{
 // Notification message class and subject and feed scope.
 private final EMessageKey mKey;
 private final FeedScope mScope;

 // Historic feed begin and end times and clusivity.
 private final Instant mBeginTime;
 private final Clusivity mBeginClusivity;
 private final Instant mEndTime;
 private final Clusivity mEndClusivity;

 // Store feed reference here so it may be used to unsubscribe.
 private EHistoricSubscribeFeed mFeed;

 public CatalogSubscriber(final String subject,
 final FeedScope scope,
 final Instant beginTime,
 final Clusivity beginClusivity,
 final Instant endTime,
 final Clusivity endClusivity) {
 mKey = new EMessageKey(CatalogUpdate.class, subject);
 mScope = scope;
 mBeginTime = beginTime;
 mBeginClusivity = beginClusivity;
 mEndTime = endTime;
 mEndClusivity = endClusivity;
 }

 @Override public void startup() {
 try {
 final EHistoricSubscribeFeed.Builder builder =
 EHistoricSubscribeFeed.builder(mKey, this);

 mFeed = builder.scope(mScope)
 .from(mBeginTime, mBeginClusivity)
 .to(mEndTime, mEndClusivity)
 .build();
 mFeed.startup();
 mFeed.subscribe();
 } catch (Exception jex) {
 // Feed open failed. Place recovery code here.
 }
 }
}

Page of 126 212

Don't Know Much About History

Step 3: Handling publisher feed status
Historic feeds inform historic subscribers when an historic publisher's feed status changes using the
PublishStatusEvent. This notification message contains:

Unique publisher identifier. The importance of historic publishers being assigned an application-wide
unique identifier cannot be stressed enough. It is needed so that historic subscribers can match
publisher feed state with publisher notification message stream.

Notification message key. This is the publisher feed stream message key and not
PublishStatusEvent key.

Latest publisher feed state.

This callback allows the historic subscriber the ability to determine if there is a break in an individual
publisher's notification message stream.

IEHistoricSubscriber.feedStatus method may be replaced by another subscriber lambda expression using
EHistoricSubscribeFeed.Builder.statusCallback(HistoricFeedStatusCallback). 

Page of 127 212

eBus Programmer’s Manual

import net.sf.eBus.feed.historic.PublishStatusEvent;

public class CatalogSubscriber
 implements IEHistoricSubscriber
{
 @Override public void feedStatus(final PublishStatusEvent event,
 final EHistoricSubscribeFeed feed) {
 if (event.feedState == EFeedState.UP) {
 // Mark event.publisherId as up.
 }
 else {
 // Mark event.publisherId as down.
 }
 }
}

Page of 128 212

Don't Know Much About History

Step 4: Handling notifications
Both past and/or live notification messages are delivered to to IEHistoricSubscriber.notify
method.

This interface method may be replaced by a another subscriber lambda expression using
EHistoricSubscribeFeed.Builder.notifyCallback(HistoricNotifyCallback). 

Page of 129 212

eBus Programmer’s Manual

public class CatalogSubscriber
 implements IEHistoricSubscriber
{
 @Override public void notify(final ENotificationMessage msg,
 final EHistoricSubscribeFeed feed) {
 // Process notification message.
 }
}

Page of 130 212

Don't Know Much About History

Step 5: Handling historic feed completion
If the historic subscribe feed is set to end at a fixed time (past or present), then
IEHistoricSubscriber.feedDone(HistoricFeedState, EHistoricSubscribeFeed) is
called when the historic subscribe feed reaches that end time. If the historic subscribe successfully
completed, then feed state is set to HistoricFeedState.DONE_SUCCESS. Otherwise feed state is
HistoricFeedState.DONE_ERROR and EHistoricSubscribeFeed.errorCause() may be called
to determine why the historic subscribe feed failed.

This interface method be be replaced by another subscriber lambda expression using
EHistoricSubscribeFeed.Builder.doneCallback(HistoricFeedDoneCallback). 

Page of 131 212

eBus Programmer’s Manual

public class CatalogSubscriber
 implements IEHistoricSubscriber
{
 @Override public void feedDone(final HistoricFeedState feedState,
 final EHistoricSubscribeFeed feed) {
 if (feedState == HistoricFeedState.DONE_SUCCESS) {
 // Clean up after historic subscribe feed completion.
 }
 else if (feedState == HistoricFeedState.DONE_ERROR) {
 // Place error recovery code here.
 }
 }
}

Page of 132 212

Don't Know Much About History

Step 6: Retracting historic feed.
A subscriber has only one way to retract an historic subscription:
EHistoricSubscribeFeed.shutdown(). This is because historic subscribe feeds have an
associated begin and end time. Unsubscribing and re-subscribing an historic feed would only result in re-
playing the same notification messages.

Page of 133 212

eBus Programmer’s Manual

public class CatalogSubscriber
 implements IEHistoricSubscriber
{
 @Override public void shutdown() {
 if (mFeed != null) {
 mFeed.shutdown();
 mFeed = null;
 }
 }
}

Page of 134 212

Don't Know Much About History

Step 7: Complete historic subscriber code
import java.time.Instant;
import net.sf.eBus.feed.historic.EHistoricSubscribeFeed;
import net.sf.eBus.feed.historic.EHistoricSubscribeFeed.HistoricFeedState;
import net.sf.eBus.feed.historic.PublishStatusEvent;
import net.sf.eBus.messages.ENotificationMessage;
import net.sf.eBus.client.EFeed.FeedScope;
import net.sf.eBus.messages.EMessageKey;
import net.sf.eBus.messages.ENotificationMessage;
import net.sf.eBusx.time.EInterval.Clusivity;

public class CatalogSubscriber
 implements IEHistoricSubscriber
{
 // Notification message class and subject and feed scope.
 private final EMessageKey mKey;
 private final FeedScope mScope;

 // Historic feed begin and end times and clusivity.
 private final Instant mBeginTime;
 private final Clusivity mBeginClusivity;
 private final Instant mEndTime;
 private final Clusivity mEndClusivity;

 // Store feed reference here so it may be used to unsubscribe.
 private EHistoricSubscribeFeed mFeed;

 public CatalogSubscriber(final String subject,
 final FeedScope scope,
 final Instant beginTime,
 final Clusivity beginClusivity,
 final Instant endTime,
 final Clusivity endClusivity) {
 mKey = new EMessageKey(CatalogUpdate.class, subject);
 mScope = scope;
 mBeginTime = beginTime;
 mBeginClusivity = beginClusivity;
 mEndTime = endTime;
 mEndClusivity = endClusivity;
 }

 @Override public void startup() {
 try {
 final EHistoricSubscribeFeed.Builder builder =
 EHistoricSubscribeFeed.builder(mKey, this);

 mFeed = builder.scope(mScope)
 .from(mBeginTime, mBeginClusivity)
 .to(mEndTime, mEndClusivity)
 .build();
 mFeed.startup();
 mFeed.subscribe();
 } catch (Exception jex) {
 // Feed open failed. Place recovery code here.
 }
 }

 @Override public void shutdown() {
 if (mFeed != null) {
 mFeed.shutdown();
 mFeed = null;
 }
 }

Page of 135 212

eBus Programmer’s Manual

 @Override public void feedStatus(final PublishStatusEvent event,
 final EHistoricSubscribeFeed feed) {
 if (event.feedState == EFeedState.UP) {
 // Mark event.publisherId as up.
 }
 else {
 // Mark event.publisherId as down.
 }
 }

 @Override public void notify(final ENotificationMessage msg,
 final EHistoricSubscribeFeed feed) {
 // Process notification message.
 }

 @Override public void feedDone(final HistoricFeedState feedState,
 final EHistoricSubscribeFeed feed) {
 if (feedState == HistoricFeedState.DONE_SUCCESS) {
 // Clean up after historic subscribe feed completion.
 }
 else if (feedState == HistoricFeedState.DONE_ERROR) {
 // Place error recovery code here.
 }
 }
}

Page of 136 212

Don't Know Much About History

Message Store
eBus v. 7.2.0 provides two message store implementations: in-memory and SQL. As noted in above,
message stores store a specified target eBus notification message type (as well as
net.sf.eBus.feed.historic.PublishStatusEvent as which report when an historic publisher's
feed changes state). EHistoricPublishFeed guarantees that the correct target notification message
type is stored. The eBus-provided message stores are designed to work only with historic feeds, they do
not validate inputs as the historic feed guarantees argument correctness.

If these message stores are used outside of the eBus historic message feed framework, then the
application is also responsible for guaranteeing that type correct, non-null messages are stored and non-
null intervals are provided to message retrieval.

In-memory Message Store
InMemoryMessageStore uses a fixed-length array to store and retrieve target notification message
types and PublishStatusEvent. This fixed-length array is treated as a ring buffer. When the in-
memory store reaches its maximum allowed size, the oldest message is overwritten with the new
message.

In-memory message store supports message retrieval based on an EInterval (as required by
IEMessageStore interface) and the last n messages stored. The later is not supported by eBus historic
feed but provided for application use and does validate the given message count argument is > zero.

Please note that this message store does not persist stored messages so when the store is closed, the
messages are discarded.

SQL Message Store
SqlMessageStore provides a partial interface between EHistoricPublishFeed and a Java SQL
connection (java.sql.Connection). An application using this message store is responsible for:

Defining the store notification message key.

Providing an IInertGenerator instance used to generate an SQL statement for storing an
eBus notification message (as defined by the message key) or PublishStatusEvent into
target database.

Providing an IRetrieveGenerator instance used to generate SQL statement for retrieving
eBus notification message or PublishStatusEvent from target database based on given
message key and EInterval.

Providing an IMessageDecoder instance used to translate a ResultSet into eBus notification
message (either store's target message key or PublishStatusEvent).

Note: application is responsible for inserting, retrieving, and decoding both the message type defined by
the message key and PublishStatusEvent messages. Also note that the notification type must be
inserted and retrieved using a single SQL statement. Notification types too complex for this requirement
cannot use SqlMessageMessage.

There is a one-to-one mapping between an SqlMessageStore and eBus notification message key. But
the application developer is free to design SQL tables in any way deemed best. Most likely this means
that there will be a single table for a given eBus notification message class containing the message
subject. This allows a single SqlMessageBus instance to be share among multiple

Page of 137 212

eBus Programmer’s Manual

EHistoricPublishFeeds. In this case, it is the application's responsibility to provide thread-safe
message store and retrieval.

Simply put, the application is responsible for interfacing SqlMessageStore with the application database,
translating eBus notification messages between database and Java.

The following code is used to insert and retrieve a TopOfBookMessage into and from an SQL table:

public final class TopOfBook extends ENotificationMessage {
 public final PriceSize bid;
 public final PriceSize ask;
 public final PriceType priceType; // enum (opening, closing, latest, etc.)
 …
}

public final class PriceSize extends EField {
 public final Decimal6f price; // Uses decimal4j for prices.
 public final int size;
 public final Trend trend; // enum (up, down in relation to previous message)
 …
}

The tables used to store TopOfBook and PriceSize types as well as enums are defined as follows (note:
table indices are not provided, defined using Postgresql):

CREATE TYPE price_type AS ENUM (
 'LATEST',
 'OPEN',
 'CLOSE',
 'LOW',
 'HIGH'
);

CREATE TYPE trend AS ENUM (
 'NA',
 'UP',
 'DOWN',
 'ZERO_PLUS',
 'ZERO_MINUS'
};

CREATE TYPE price_size AS (
 price NUMERIC(15,6) NOT NULL,
 size integer NOT NULL,
 price_trend trend NOT NULL
);

CREATE TABLE top_of_book (
 subject varchar(500) NOT NULL,
 message_timestamp timestamp NOT NULL,
 publisher_id bigint NOT NULL,
 publisher_position integer NOT NULL,
 bid price_size NOT NULL,
 ask price_size NOT NULL,
 price_type price_type NOT NULL,
 PRIMARY KEY (message_timestamp, publisher_id, publisher_position)
);

The generated SQL statement used to insert a TopOfBook message is:

INSERT INTO top_of_book VALUES ('ACME', '2024-01-06 07:30:53:113', 2001, 1, ROW
(12.76, 1200, 'ZERO_PLUS'::trend), ROW(12.77, 600, 'UP'::trend), 'LATEST'::price_type)

Page of 138 212

Don't Know Much About History

The generated SQL statement to retrieve a TopOfBook message for the EInterval [2024-01-06 07:47,
2024-01-06 07:50) is:

SELECT subject, message_timestamp, publisher_id, publisher_position, (bid).price,
(bid).size, (bid).price_trend, (ask).price, (ask).size, (ask).price_trend, price_type
FROM top_of_book WHERE message_timestamp >= '2024-01-06 07:47:00' AND
message_timestamp < '2024-01-06 07:50:00'

The IMessageDecoder method to translate a ResultSet to TopOfBook instance is:

@Override public ENotificationMessage toMessage(EMessageKey key, ResultSet rs)
 throws SQLException {
 final String tickerSymbol = rs.getString(1);
 final Instant timestamp = (rs.getTimestamp(2)).toInstant();
 final long publisherId = rs.getLong(3);
 final int position = rs.getInt(4);
 final PriceSize bid =
 (PriceSize.builder()).price(Decimal6f.valueOf(rs.getBigDecimal(5)))
 .size(rs.getInt(6))
 .trend(Trend.valueOf(rs.getString(7)))
 .build();
 final PriceSize ask =
 (PriceSize.builder()).price(Decimal6f.valueOf(rs.getBigDecimal(8)))
 .size(rs.getInt(9)
 .trend(Trend.valueOf(rs.getString(10)))
 .build();
 final PriceType priceType = PriceType.valueOf(rs.getString(11));
 final TopOfBookMessage.Builder builder = TopOfBookMessage.builder();

 return (builder.subject(tickerSymbol)
 .timestamp(timestamp)
 .publisherId(publisherId)
 .position(position)
 .bid(bid)
 .ask(ask)
 .priceType(priceType)
 .build()));
}

The SQL and Java for PublishStatusEvent messages is not shown but is similar to TopOfBook.

Persisting Messages
eBus v. 6.2.0 adds the interface net.sf.eBus.client.IMessageExhaust. An application
implements IMessageExhaust and passes an instance of that implementation to
EFeed.setExhaust(IMessageExhaust). The local eBus then passes all notification, request, and
reply messages flowing through eBus to the registered message exhaust.

Note: only one exhaust instance may be may be registered at a time. If the application does not want to
exhaust all messages, then the IMessageExhaust implementation is responsible for filtering out
unwanted messages. If the application needs to exhaust messages to different persistent stores, again
the registered exhaust is responsible for interfacing with those multiple stores.

The application is responsible for opening and closing exhaust persistent stores when appropriate.
Message exhaust is "turned off" by passing a null IMessageExhaust value to EFeed.setExhaust.
resulting in the default message exhaust which does nothing with the given eBus message.
IMessageExhaust.exhaust(EMessage) method is called from an eBus dispatcher thread. This
means that message exhaust does not interfere with eBus message forwarding - meaning that the
exhaust process is not in-line with the message forwarding process. 

Page of 139 212

eBus Programmer’s Manual

Connecting Up
eBus’ purpose is to transmit messages between applications with minimal application development effort.
The eBus interface and feed API is the same whether exchanging messages within a JVM or between
JVMs except when using inter-JVM messaging, you must specify either a
EFeed.FeedScope.LOCAL_AND_REMOTE or REMOTE_ONLY scope. LOCAL_ONLY feed scope prevents
a message from being sent to or received from a remote JVM.

An eBus application may open a service port which accepts client connections, open a client connection
to a eBus service, or both. Whichever topology is chosen:

Only one connection is allowed between an eBus application pair regardless of which application
initiated the connection.

A second connection is immediately rejected.

So let’s see how to get eBus applications talking to each other.

eBus v. 4.7.0 introduces SSL/TLS secure TCP connections. Secure eBus service and connections
cannot be defined in eBus properties as this requires storing sensitive security information in the clear.
Therefore, eBus secure services and connections can only be created using the eBus EConfigure
builder API. Go here to learn how to do this.

eBus v. 5.3.0 introduces unreliable UDP connections. No matter what connection type used, only one
connection is allowed between eBus applications. While UDP is a connection-less protocol, eBus is
connection-based. So an application wanting to receive UDP connections must open a UDP service port.
This port, like a TCP service, creates a new UDP socket when it "accepts" a UDP connect request.

eBus v. 6.0.0 introduces DTLS secure UDP connections.

eBus v. 7.0.0 introduces reliable UDP connections (both in the clear and secure).

Both TCP and UDP connection types may appear in configuration files. Therefore a new property key
connectionType has been added. This property is required.

Appendix A shows how eBus messages are serialized to the wire.

Appendix B shows how eBus protocol used between eBus applications.

Please note: As of eBus v. 6.0.0 configuration using Java Properties is no longer supported.
Property files must be converted to JSON typesafe HOCON syntax.

Page of 140 212

Connecting Up

Step 1: Opening an eBus service
An eBus service is as simple as calling net.sf.eBus.client.EServer.openServer(port) - if you
want to use the default settings. Listed below are eBus server parameters. Keyword shows the matching
eBus configuration file keyword used to set the parameter via the eBus configuration file (step 5).

Name: Services list.
Description: JSON typesafe array of services.
Type: JSON array of EConfigure.Service configurations.
Optional? Yes.
Check: None.
Default: No services.
Keyword: services

Name: Service name.
Description: Unique service name within services array.
Type: String
Optional? No.
Check: Is not empty string. Must be unique within service list. Service name has no formatting
restrictions.
Default: No default.
Keyword: name

Name: Connection type.
Description: Either "TCP" or "UDP".
Type: net.sf.eBus.config.EConfigure.ConnectionType
Optional? Yes
Check: Must be a valid connection type name. May not be a secure connection type if defined in a
configuration file.
Default: ConnectionType.TCP
Keyword: connectionType

Name: Port number.
Description: The TCP or UDP service port number.
Type: int
Optional? No.
Check: 0 ≤ port ≤ 65,536
Default: None.
Keyword: port

Name: Positive address filter.
Description: Specifies what Internet address or Internet address and TCP port pairs may connect to this
service. This is a positive filter only. It is not a negative filter which specifies what addresses may not
connect to the eBus service. If no address filter is provided then all connections are accepted. See step 4
for further information.
Type: Array of net.sf.eBus.client.AddressFilter
Optional? Yes.
Check: None.
Default: No filter, all client connections are accepted.
Keyword: addressFilter

Page of 141 212

eBus Programmer’s Manual

Name: Service selector thread name.
Description: The server socket is associated with this selector thread (see eBus network configuration,
step 3).
Type: String
Optional? Yes.
Check: Selector name may not be null, empty, or unknown.
Default: Default selector specified by network configuration (step 3).
Keyword: serviceSelector

Name: Accepted connection selector thread name.
Description: Accepted client sockets are associated with this selector thread (see eBus network
configuration, step 3).
Type: String
Optional? Yes.
Check: Selector name may not be null, empty, or unknown.
Default: Default selector specified by network configuration (step 3).
Keyword: connectionSelector

Name: Input buffer size.
Description: Set each accepted socket input buffer size to this number of bytes. The more data you
expect to receive on the socket per second, the larger you should set this value.
Type: int
Optional? Yes.
Check: > zero.
Default: 2,048 bytes.
Keyword: inputBufferSize

Name: Output buffer size.
Description: Set each accepted socket output buffer size to this number of bytes. The more data you
expect to send on the accepted socket per second, the larger you should set this value.
Type: int
Optional? Yes.
Check: > zero.
Default: 2,048 bytes.
Keyword: outputBufferSize

Name: Buffer byte order
Description: Set the socket input and output buffer to this byte order.
Type: java.nio.ByteOrder
Optional? Yes.
Check: must be either ByteOrder.BIG_ENDIAN or ByteOrder.LITTLE_ENDIAN.
Default: ByteOrder.LITTLE_ENDIAN
Keyword: byteOrder

Name: Output message queue size.
Description: Set each accepted socket's maximum output message queue size to this value. When the
output message queue reaches this size, then the accepted socket is automatically closed. If this value is
set to zero, then the message queue is allowed to grow without limit.
Type: int
Optional? Yes.
Check: ≥ zero.
Default: Zero (unlimited queue size).
Keyword: messageQueueSize

Page of 142 212

Connecting Up

Name: Heartbeat delay.
Description: Send heartbeats at this millisecond rate. If set to zero, heart-beating is not performed. The
heartbeat delay is reset when a message is received.
Type: java.time.Duration
Optional? Yes.
Check: ≥ zero.
Default: Zero (no heart-beating)
Keyword: heartbeatDelay

Name: Heartbeat reply delay.
Description: Wait this many milliseconds for a reply to a heartbeat. If set to zero, then wait indefinitely for
a heartbeat reply.
Type: java.time.Duration
Optional? Yes.
Check: ≥ zero.
Default: Zero (wait indefinitely)
Keyword: heartbeatReplyDelay

Name: Can Pause Flag.
Description: Specifies whether accepted connections may accept pauses requests or not.
Type: boolean
Optional? Yes.
Check: None.
Default: false (accepted connections may not be paused).
Keyword: canPause

Name: Maximum allowed pause duration.
Description: Accepted connections are allowed to pause for this maximum allowed time.
Type: java.time.Duration
Optional? Yes but must be specified if canPause is true.
Check: ≥ zero.
Default: No default value if this property is required; zero if not required.
Keyword: pauseTime

Name: Maximum allowed message backlog size.
Description: Paused connections will backlog at most this many messages. Once the maximum is
reached, messages will be discarded to keep the backlog size at the maximum.
Type: int
Optional? Yes but must be specified if canPause is true.
Check: > zero.
Default: No default value if this property is required; zero if not required.
Keyword: maxBacklogSize  

Page of 143 212

eBus Programmer’s Manual

Step 2: Opening an eBus client connection
Opening an eBus client connection is also simple if willing to accept the default settings:
net.sf.eBus.client.ERemoteApp(InetSocketAddress). The full client connection settings are
listed below. Keyword shows the matching eBus configuration file keyword used to set the parameter via
the eBus configuration file (step 5).

Name: Connections list.
Description: JSON typesafe array of remote connections.
Type: JSON array of EConfigure.RemoteConnection configurations.
Optional? Yes.
Check: None.
Default: No connections.
Keyword: eBus.connections

Name: Connection name.
Description: Unique connection name within connections array.
Type: String
Optional? No.
Check: Is not empty string. Must be unique within service list. Connection name has no formatting
restrictions.
Default: No default.
Keyword: name

Name: Connection type.
Description: Either "TCP", "UDP", "SECURE_TCP", "SECURE_UDP", "RELIABLE_UDP",
"SECURE_RELIABLE_UDP"
Type: net.sf.eBus.config.EConfigure.ConnectionType
Optional? Yes
Check: Must be a valid connection type name.
Default: ConnectionType.TCP
Keyword: connectionType

Name: Internet address and port.
Description: Remote eBus server Internet address.
Type: String
Optional? No.
Check: Not null or empty string. Must be a valid host name or dotted IP address notation.
Default: No default.
Keyword: host

Name: Internet port.
Description: Remote eBus service port.
Type: int
Optional? No.
Check: ≥ zero.
Default: No default.
Keyword: port

Name: Bind port.
Description: Bind the local port to this value when connecting. This may be required if the remote eBus
uses an address filter with a specified port.
Type: int.
Optional? Yes.

Page of 144 212

Connecting Up

Check: ≥ zero.
Default: AsyncSocket.ANY_PORT (local port assigned by the OS).
Keyword: bindPort

Name: Selector thread name.
Description: Client socket is associated with this selector thread (see eBus network configuration, step
3).
Type: String
Optional? Yes.
Check: Selector name may not be null, empty, or unknown.
Default: Default selector specified by network configuration (step 3).
Keyword: selector

Name: Input buffer size.
Description: Set the socket's input buffer size to this number of bytes. The more data you expect to
receive on the socket per second, the larger you should set this value.
Type: int
Optional? Yes.
Check: > zero.
Default: 2,048 bytes.
Keyword: inputBufferSize

Name: Output buffer size.
Description: Set the socket's output buffer size to this number of bytes. The more data you expect to
send on the accepted socket per second, the larger you should set this value.
Type: int
Optional? Yes.
Check: > zero.
Default: 2,048 bytes.
Keyword: outputBufferSize

Name: Buffer byte order.
Description: Set the socket input and output buffer to this byte order.
Type: java.nio.ByteOrder
Optional? Yes.
Check: must be either ByteOrder.BIG_ENDIAN or ByteOrder.LITTLE_ENDIAN.
Default: ByteOrder.LITTLE_ENDIAN
Keyword: byteOrder

Name: Output message queue size.
Description: Set the socket's maximum output message queue size to this value. When the output
message queue reaches this size, then the socket is automatically closed. If this value is set to zero, then
the message queue is allowed to grow without limit.
Type: int
Optional? Yes.
Check: ≥ zero.
Default: Zero (unlimited queue size).
Keyword: eBus.connection.connection.messageQueueSize

Page of 145 212

eBus Programmer’s Manual

Name: Reconnect flag.
Description: If true, then eBus will automatically re-establish the connection if lost.
Type: boolean
Optional? Yes.
Check: None.
Default: false (no reconnecting).
Keyword: reconnect

Name: Reconnect delay.
Description: If the reconnect flag is true, then wait this many milliseconds before attempting to
reconnect. This value is ignored if the reconnect flag is false.
Type: java.time.Duration
Optional? Yes.
Check: > zero.
Default: No default.
Keyword: reconnectTime

Name: Heartbeat delay.
Description: Send heartbeats at this millisecond rate. If set to zero, heartbeating is not performed.
Type: java.time.Duration
Optional? Yes.
Check: ≥ zero.
Default: Zero (no heart-beating).
Keyword: heartbeatDelay

Name: Heartbeat reply delay.
Description: Wait this many milliseconds for a reply to a heartbeat. If set to zero, then wait indefinitely for
a heartbeat reply. The heartbeat delay is reset when a message is received.
Type: java.time.Duration
Optional? Yes.
Check: ≥ zero.
Default: Zero (wait indefinitely).
Keyword: heartbeatReplyDelay

Name: Can Pause Flag.
Description: Specifies whether the connection may be paused or not.
Type: boolean
Optional? Yes.
Check: None.
Default: false (connection may not be paused).
Keyword: canPause

Name: Pause duration.
Description: Pause connection for this maximum time.
Type: java.time.Duration
Optional? Yes but must be specified if canPause is true.
Check: ≥ zero.
Default: No default value if this property is required; zero if not required.
Keyword: pauseTime

Page of 146 212

Connecting Up

Name: Message backlog size.
Description: Paused connections will backlog at most this many messages. Once the maximum is
reached, messages will be discarded to keep the backlog size at the maximum.
Type: int
Optional? Yes but must be specified if canPause is true.
Check: > zero.
Default: No default value if this property is required; zero if not required.
Keyword: maxBacklogSize

Name: Discard policy.
Description: Policy for discarding messages when the message backlog maximum is reached.
Type: net.sf.eBus.config.EConfigure.DiscardPolicy
Optional? Yes but must be specified if canPause is true.
Check: Must be either DiscardPolicy.OLDEST_FIRST or DiscardPolicy.YOUNGEST_FIRST.
Default: No default value if this property is required; null if not required.
Keyword: discardPolicy

Name: Idle time.
Description: Pause when no messages are sent or received for this time.
Type: java.time.Duration
Optional? Yes but must be specified if canPause is true.
Check: ≥ zero.
Default: No default value if this property is required; zero if not required.
Keyword: idleTime

Name: Maximum connect time.
Description: Pause after being connected for this time.
Type: java.time.Duration
Optional? Yes but must be specified if canPause is true.
Check: ≥ zero.
Default: No default value if this property is required; zero if not required.
Keyword: idleTime  

Page of 147 212

eBus Programmer’s Manual

Step 3: eBus network configuration
eBus uses the Java NIO selector to determine when a TCP connection is ready to be read from or written
to. eBus interacts with java.nio.channels.Selector from a
net.sf.eBus.net.SelectorThread. An application may specify multiple selector threads with
different latency performance depending on the connection requirements. There are three types of
selector threads:

Blocking: the selector thread blocks on java.nio.channels.Selector.select().
Spinning: the selector thread spins on java.nio.channels.Selector.selectNow().
Spinning is best done when the selector thread is pinned and owns a single core. eBus currently
does not support pinning a selector thread to a core.
Spin+Park: the selector thread alternates between spinning on
java.nio.channels.Selector.selectNow() and parking (calling
java.util.concurrent.locks.LockSupport.parkNanos(nanoTime)). This is a
compromise between pure blocking and pure spinning. The spin limit and nanosecond park time
are configurable.
Spin+Yield: the selector thread alternates between spinning on selectNow() and yielding (calling
LockSupport.park()). The spin limit is configurable.

Note: eBus configures selector threads at application start. Network configuration must be placed into a
properties file and the java command line parameter set to point to that properties file:

 -Dnet.sf.eBus.jsonConfig.file=<conf file path>

Name: Selector threads list.
Description: a JSON array of SelectorInfo configurations. The selector names should be unique (no
duplicates). All duplicates are logged and ignored. The selector thread name is used to retrieve the
remaining keys.
Type: JSON array of SelectorInfo configurations.
Optional? Yes.
Check: None.
Default: A single blocking selector thread with java.lang.Thread.NORM_PRIORITY.
Keyword: selectors

Name: Selector thread name.
Description: Unique selector thread name.
Type: String
Optional? No.
Check: Must be a non-null, non-empty string.
Default: No default
Keyword: name

Name: Selector thread type.
Description: Specifies the selector behavior type.
Type: String
Optional? No.
Check: Must be either blocking, spinning, spin+park, or spin+yield (case-insensitive). Matches
a net.sf.eBus.config.ThreadType text name.
Default: No default
Keyword: type

Page of 148 212

Connecting Up

Name: Default selector thread flag.
Description: If a socket channel is not assigned to a specific selector thread, it is assigned to this
selector thread. If multiple selectors are designated as the default, then it cannot be determined which
selector will be used as the default.
Type: boolean
Optional? Yes.
Check: None.
Default: False (not the default selector thread).
Keyword: isDefault

Name: Thread priority
Description: The selector thread is assigned this Java thread priority value.
Type: int
Optional? Yes.
Check: Must be ≥ java.lang.Thread.MIN_PRIORITY and ≤ java.lang.Thread.MAX_PRIORITY.
Default: java.lang.Thread.NORM_PRIORITY
Keyword: priority

Name: spin+park or spin+yield spin limit.
Description: If type is spin+park or spin+yield, then this is the number of times the selector
thread will call Selector.selectNow() before parking. When the park is finished, the selector thread
resets its spin count to this spin limit and goes back to spinning. Ignored if type is not either spin+park
or spin+yield.
Type: long
Optional? Yes.
Check: > zero
Default: net.sf.eBus.net.ENetConfigure.DEFAULT_SPIN_LIMIT
Keyword: spinLimit

Name: spin+park park time
Description: If type is spin+park, then this is the selector thread nanosecond park time. Ignored if
type is not spin+park.
Type: long
Optional? Yes.
Check: > zero
Default: net.sf.eBus.net.ENetConfigure.DEFAULT_PARK_TIME
Keyword: parkTime

Because network configuration must be done at application start,
ENetConfigure cannot be set programmatically. The configuration must be
placed in a properties file and that file specified using the Java
-D command line option:
java -Dnet.sf.eBus.jsonConfig.file=<conf file path>
NOTE: selectors must be defined first in the property file.

Two separate select threads are used: a spinning market data, and a
spin+park selector for stock orders.
selectors : [

 # Market data selector is low latency, so uses a spinning selector thread.
 {
 name : mdSelector

Page of 149 212

eBus Programmer’s Manual

 type=spinning
 isDefault=false
 priority=9
}

Order selector is low latency but not as critical as the market data.
So this selector uses spin+park so as not to monopolize a CPU core.
{
 name : orderSelector
 type="spin+park"
 isDefault=false
 priority=7
 spinLimit=3000000
 parkTime=1000ns
}

All other utility channels use a low-priority blocking selector.
{
 name : utilitySelector
 type=blocking
 isDefault=true
 priority=3
}

Step 4: Address filter
An eBus service can be configured to accept connections from a specified series of hosts and, optionally,
TCP ports on that host. Address filters can be created programmatically by constructing an
AddressFilter instance or from a text description: AddressFilter.parse(String
description). An address filter can also be described in an eBus properties file via the
eBus.service.addressFilter property.

When specifying an address filter using text (AddressFilter.parse or properties file), the format is:

address filter ::= <address> [‘,’ <address>]*
address ::= (<host> | <IPv4 address> | <IPv6 address>) [‘:’ <port>]
<host> ::= a host name which may be successfully de-referenced by
java.net.InetAddress.getByName(String host).
<IPv4 address> ::= a valid IPv4 dotted notation address.
<IPv6 address> ::= a valid IPv6 colon delimited address.

An example address filter property follows. This filter allows connections from hosts 192.168.3.2 and
192.168.3.3. In both instances, the remote port must be bound to 55001.

eBus.service.addressFilter=192.168.3.2:55001,192.168.3.3:55001

eBus address filtering is positive only. That means it specifies those addresses from which clients may
connect. If the client is not in the filter, then eBus immediately closes the newly accepted connection.
eBus does not support a negative filter which specifies addresses from which client may not connect. 

Page of 150 212

Connecting Up

Step 5: eBus configuration file
eBus v. 5.1.0 supports using typesafe JSON configuration using the HOCON format. eBus service and
client connections may be opened automatically on application start by specifying those connections in a
properties file and setting the eBus command line parameter to that properties file name:

 -Dnet.sf.eBus.jsonConfig.file=<conf file path>

This properties file would contain the eBus network configuration properties (if the default network
configuration is not used). A Sample Java configuration file is shown below. It is a text file using the JSON
typesafe properties format.

// Selectors for connections and services listed below.
selectors : [
 {
 name : mdSelector
 type : spinning
 isDefault : false
 priority : 9
 },
 {
 name : orderSelector
 type : "spin+park"
 isDefault : false
 priority : 7
 spinLimit : 3000000
 parkTime : 1000ns
 },
 {
 name : utilitySelector
 type : blocking
 isDefault : true
 priority : 3
 }
]

connections : [
 {
 name : marketData
 connectionType : UDP
 host : "192.168.3.1"
 port : 10000
 inputBufferSize : 8192
 outputBufferSize : 8192
 byteOrder : BIG_ENDIAN
 messageQueueSize : 0
 selector : mdSelector
 // No heartbeating, no reconnecting.
 heartbeatDelay : 0
 reconnect : false

 // Market data connections may not be paused.
 canPause : false

 },
 {
 name : stockOrders
 // connectionType defaults to TCP.

Page of 151 212

https://github.com/lightbend/config
https://github.com/lightbend/config/blob/master/HOCON.md

eBus Programmer’s Manual

 host : "StocksRUs.com"
 port : 10001
 bindPort : 55000
 inputBufferSize : 1024
 outputBufferSize : 1024
 byteOrder : BIG_ENDIAN
 messageQueueSize : 10
 selector : orderSelector
 reconnect : true
 reconnectTime : 500ms

 // Order connections may be paused - for demonstration purposes only.
 canPause : true

 // Pause configuration.
 pause : {
 pauseTime : 5m // Pause for at most 5 minutes or …
 resumeOnBacklogSize : 10 // … 10 messages are queued.
 maxBacklogSize : 20 // Queue up at most 20 messages.
 discardPolicy : YOUNGEST_FIRST
 idleTime : 1m // Pause after being idle 1 minute or …
 maxConnectTime : 2m // … connected for 2 minutes.
 }
 }
]

services : [
 {
 name : monitorService
 connectionType : UDP
 port : 8912
 addressFilter : [
 "192.168.3.2", "192.168.3.3:550001"
]
 inputBufferSize : 1024
 outputBufferSize : 1024
 byteOrder : BIG_ENDIAN
 messageQueueSize : 10000
 serviceSelector : utilitySelector
 connectionSelector : utilitySelector
 heartbeatDelay : 30s
 heartbeatReply : 500ms

 // Accepted connections may be paused.
 canPause : true

 pause : {
 pauseTime : 10m // Pause time is at most 10 minutes.
 maxBacklogSize : 25 // Queue up at most 25 messages.
 }
 }
]

Page of 152 212

http://StocksRUs.com

Connecting Up

Step 6: Building Servers and Connections.
eBus servers and connections may be started programmatically using ServerBuilder and
ConnectionBuilder classes. The builder API allows the program to specifically set just those
parameters that are required and to leave the rest to their optional settings. Builders are instantiated
using a no argument default constructor. The builder default settings are:

What follows are two examples showing how ServerBuilder and ConnectionBuilder may be used
to open an EServer and ERemoteApp:

final AddressFilter filter = ...;
final EConfigure.ServerBuilder builder = EConfigure.serverBuilder();

EServer.openServer(builder.name(“AppServer") // Required
 .connectionType("UDP") // Required, defaults to "TCP"
 .port(6789) // Required
 .addressFilter(filter)
 .inputBufferSize(1_024)
 .outputBufferSize(1_024)
 .byteOrder(ByteOrder.BIG_ENDIAN)
 .messageQueueSize(100)
 .serviceSelector("svcSelector")
 .connectionSelector("connSelector")
 .heartbeatDelay(60_000L)
 .heartbeatReplyDelay(30_000L)
 .build()); // creates EConfigure.Service

Parameter ServerBuilder ConnectionBuilder

connection type EConfigure.ConnectionType.TCP EConfigure.ConnectionType.TCP

address filter null - no address filter applied NA

bind port NA ERemoteApp.ANY_PORT

input buffer size AsyncChannel.DEFAULT_BUFFER_SIZE AsyncChannel.DEFAULT_BUFFER_SIZE

output buffer size AsyncChannel.DEFAULT_BUFFER_SIZE AsyncChannel.DEFAULT_BUFFER_SIZE

byte order ByteOrder.LITTLE_ENDIAN ByteOrder.LITTLE_ENDIAN

max message queue size 0 - unlimited queue size 0 - unlimited queue size

server selector thread AsyncChannel.defaultSelector NA

connection selector
thread

AsyncChannel.defaultSelector AsyncChannel.defaultSelector

heartbeat delay zero milliseconds: no heartbeating zero milliseconds: no heartbeating

heartbeat reply delay zero milliseconds: indefinite wait zero milliseconds: indefinite wait

reconnect flag NA false - no auto-reconnect.

reconnect delay NA 0 - no auto-reconnect

Page of 153 212

eBus Programmer’s Manual

final EConfigure.ConnectionBuilder builder = EConfigure.connectionBuilder();

ERemoteApp.openConnection(builder.name(“Conn0") // Required
 .connectionType("UDP") // Required, defaults to "TCP"
 .address(address) // Required
 .bindPort(16421)
 .inputBufferSize(4_996)
 .outputBufferSize(8_192)
 .byteOrder(ByteOrder.BIG_ENDIAN)
 .messageQueueSize(100)
 .selector("connSelector")
 .reconnect(true)
 .reconnectDelay(500L)
 .heartbeatDelay(0L) // Heartbeating off
 .heartbeatReplyDelay(0L)
 .build()); // creates EConfigure.RemoteConnection

An eBus server and connection are closed by calling:

EServer.closeServer(port);

ERemoteApp.closeConnection(address);

If all eBus services and connections must be closed at one time, then call:

EServer.closeAllServers();

ERemoteApp.closeAllConnections();

Building Secure Servers and Connections

Secure TCP connections, both server and connection, are built by adding the following two properties:

final javax.net.ssl.SSLContext secureContext = ...;

EServer.openServer(builder.name(“AppServer")

 .port(6789)

 .connectionType(EConfigure.ConnectionType.SECURE_TCP)

 .sslContext(secureContext)

 ...

ERemoteApp.openConnection(builder.name(“Conn0")

 .address(address)

 .connectionType(EConfigure.ConnectionType.SECURE_TCP)

 .sslContext(secureContext)

 ...

Please note that it is the eBus user’s responsibility to create the SSLContext instance in a secure
fashion and provide that instance to eBus. eBus uses that context to establish a secure TCP connection
based on SSL/TLS. 

Page of 154 212

Connecting Up

Step 7: Connection notification
An application can be notified when the eBus service accepts a new client connection or when a client
connection’s status changes by implementing net.sf.eBus.client.ESubscriber interface and
subscribing to the following notification message keys:

Service updates: net.sf.eBus.client.ServerMessage:”/eBus”

Client updates: net.sf.eBus.client.ConnectionMessage:”/eBus”

Note: the subscription feed scope is local only.

ServerMessage contains two fields:

1. InetSocketAddress remoteAddress: this accepted client connection address. Client
connections which do not pass the address filter are not reported.

2. int serverPort: the client connection was accepted on this server port.

ConnectionMessage contains four fields:

1. InetSocketAddress remoteAddress: the client connection’s remote address.

2. int serverPort: if the client connect was accepted by an EServer, then this is the server port. If
this connection was initiated by the application, then this value is set to zero.

3. ConnectionState state: the client connection state is either ConnectionState.LOGGED_ON or
ConnectionState.LOGGED_OFF.

4. String reason: If state is LOGGED_OFF and the state change is due to an exception, then the
exception message is stored in this field. May be null.

The following code is an example ConnectionMessage subscriber. ServerMessage subscription is
similar.

import net.sf.eBus.client.ConnectionMessage;
import net.sf.eBus.client.EFeed.FeedScope;
import net.sf.eBus.client.EFeedState;
import net.sf.eBus.client.ESubscriber;
import net.sf.eBus.client.ESubscribeFeed;
import net.sf.eBus.client.IESubscribeFeed;
import net.sf.eBus.messages.ENotificationMessage;

public final class ConnectionWatcher
 implements ESubscriber
{
 private final int mPort;
 private ESubscribeFeed mConnectFeed;

 public ConnectionWatcher(final int port) {
 mPort = port;
 mConnectFeed = null;
 }

Page of 155 212

eBus Programmer’s Manual

 @Override public void startup() {
 // Watch for connections associated with one EServer port.
 mConnectFeed =
 (ESubscribeFeed.builder())
 .target(this)
 .messageKey(ConnectionMessage.MESSAGE_KEY)
 .scope(FeedScope.LOCAL_ONLY)
 .condition(m -> ((ConnectionMessage) m).serverPort == mPort);
 mConnectFeed.subscribe();
 }

 @Override public void shutdown() {
 mConnectFeed.close();
 mConnectFeed = null;
 }

 @Override public void feedStatus(final EFeedState feedState,
 final IESubscribeFeed feed) {
 System.out.format("%s feed is %s.%n", feed.key(), feedState);
 }

 @Override public void notify(final ENotificationMessage msg,
 final IESubscribeFeed feed) {
 final ConnectionMessage connMessage = (ConnectionMessage) msg;
 final InetSocketAddress address = connMsg.remoteAddress;

 System.out.format("Connection to %s, port %d is %s, reason: %s.%n",
 address.getAddress(),
 address.getPort(),
 connMessage.state,
 (connMessage.reason == null ?
 “(none)” :
 connMessage.reason));
 }
}

Page of 156 212

Dispatcher

Pausing Connections
eBus v. 5.1.0 introduces connection pause. A client eBus may request that a connection be paused for a
given duration and that the far-end queue up undelivered messages to a maximum backlog size. The far-
end server eBus may accept or reject the pause request. If accepted, the far-end response contains the
pause duration and backlog size allowed. These values will be ≤ the requested values. When the client
receives this acceptance pause response, the connection is closed. The client then reconnects after the
agreed upon delay and receives the undelivered messages (if any).

The client may resume the connection earlier than the agreed upon pause delay if it's local message
queue reaches a configured limit. For example, both ends agree to pause for 5 minutes but the client
eBus is configured to reconnect when the backlog contains 10 application messages (system messages
are not used to calculate queue size). When the backlog has 10 application messages after 3 minutes,
the client eBus resumes the paused connection.

Client connections are automatically paused after a specified idle time during which no messages are
sent or received or after a maximum connect time. This is to prevent a busy connection from keeping the
connection up permanently.

The pause feature is targeted for mobile devices which cannot maintain a network connection for any
length of time without excessive battery drain. 

Page of 157 212

eBus Programmer’s Manual

Multicast Connections
eBus release 5.5.0 introduces multicast connections between eBus applications allowing notification
messages to be shared between those applications joined to the same multicast group. The eBus
multicast connection is built around a multi-feed and used to play a single role: either multicast publisher
or multicast subscriber.

A multicast publisher uses an EMultiSubscribeFeed to receive remotely scoped notifications from 10

eBus and then posts the messages to the multicast group. Conversely a multicast subscriber receives
messages from the multicast group and publishes to eBus using an EMultiPublishFeed. The
notification messages allowed across a multicast connection are defined by its multi-feed(s). These feeds
are set when the multicast connection is created. The following sections show how to define a multicast
connection using a typesafe JSON configuration (in HOCON format) and then using the eBus API to
create the same connection.

Multicast JSON Configuration11

The easiest way to define and open multicast connections is by placing them into typesafe properties file
and then loading that file on application start:

 -Dnet.sf.eBus.config.jsonFile=<conf file path>

The format is similar to that used in the above section JSON Configuration. This example contains two
multicast connections in the application: one to publish TextMessages and the other to receive Trades.
The selectors property is used for both direct and multicast connections and so is not shown in this
example. Assume that this property is set and defines mcastSelector. Required properties are
highlighted in green.

 A publish feed scoped as Feed.FeedScope.LOCAL_AND_REMOTE or REMOTE_ONLY.10

 eBus multicast connection can only be defined using typesafe JSON configuration. 11

Page of 158 212

Dispatcher

multicastGroups : [
 # Publisher multicast connection.
 {
 name : MCAST-PUB
 mcastRole : PUBLISHER
 multicastGroup : "230.0.0.0"
 targetPort : 5000
 networkIF : en8
 protocolFamily : INET
 bindPort : 5001
 order : LITTLE_ENDIAN
 selector : "mcastSelector"
 inputSize : 512
 outputSize : 512

 # EMultiPublishFeeds define notification messages posted to multicast
 # group.
 multicastKeys : [
 multifeedType : LIST
 messageClass : com.acme.personal.TextMessage
 subjectList : [
 "Tom", "Dick", "Harry"
]
]
 },
 # Subscriber multicast connection.
 {
 name : MCAST-SUB
 mcastRole : SUBSCRIBER
 multicastGroup : "230.0.0.0"
 targetPort : 5011
 networkIF : en8
 protocolFamily : INET
 bindPort : 5010
 order : LITTLE_ENDIAN
 selector : "mcastSelector"
 inputSize : 512
 outputSize : 512

 # EMultiSubscribeFeeds define notification messages received from
 # multicast group. In this example receive trade notifications for
 # stock symbols A-M, inclusive.
 multicastKeys : [
 multifeedType : QUERY
 messageClass : com.acme.marketData.Trade
 subjectQuery : "[A-M][A-Z]*"
 # Allow newly defined symbols to be automatically added to the feed.
 isDynamic : true
]
 }
]

Page of 159 212

eBus Programmer’s Manual

Building eBus Multicast Connections
The same multicast connection is now defined dynamically using the eBus multicast connection API.
Again required settings are in green.

import com.acme.marketData.Trade;
import com.acme.personal.TextMessage;
import com.google.common.collect.ImmutableList;
import net.sf.eBus.config.EConfigure;

final EConfigure.MulticastBuilder pubBuilder =;
final EConfigure.MulticastBuilder subBuilder = EConfigure.multicastBuilder();
final InetAddress group = InetAddress.getByName("230.0.0.0");
final NetworkInterface netIF = NetworkInterface.getByName("en8");
final String textClass = TextMessage.getCanonicalName();
final List<String> textSubjects = ImmutableList<>.of("Tom", "Dick", "Harry");
final String tradeClass = Trade.getCanonicalName();
final String tradeQuery = "[A-M][A-Z]*";
final EConfigure.McastNotifyConfig listFeed =
 (EConfigure.notificationBuilder()).feedType(EConfigure.MultifeedType.LIST)
 .messageClass(textClass)
 .subjectList(textSubjects)
 .build();
final EConfigure.McastNotifyConfig queryFeed =
 (EConfigure.notificationBuilder()).feedType(EConfigure.MultifeedType.QUERY)
 .messageClass(tradeClass)
 .subjectList(tradeQery)
 .isDynamic(true)
 .build();
final List<EConfigure.McastNotifyConfig> textKeys =
 ImmutableList<>.of(listFeed);
final List<EConfigure.McastNotifyConfig> tradeKeys =
 ImmutableList<>.of(queryFeed);
final EConfigure.MulticastConnection pubConfig =
 (EConfigure.multicastBuilder()).name("MCAST-PUB")
 .role(EConfigure.MulticastRole.PUBLISHER)
 .group(group)
 .targetPort(5000)
 .networkInterface(netIF)
 .protocolFamily(StandardProtocolFamily.INET)
 .bindPort(5001)
 .byteOrder(ByteOrder.LITTLE_ENDIAN)
 .inputBufferSize(512)
 .outputBufferSize(512)
 .notifications(textKeys)
 .build();
final EConfigure.MulticastConnection pubConfig =
 (EConfigure.multicastBuilder()).name("MCAST-SUB")
 .role(EConfigure.MulticastRole.SUBSCRIBER)
 .group(group)
 .targetPort(5011)
 .networkInterface(netIF)
 .protocolFamily(StandardProtocolFamily.INET)
 .bindPort(5010)
 .byteOrder(ByteOrder.LITTLE_ENDIAN)
 .inputBufferSize(512)
 .outputBufferSize(512)
 .notifications(tradeKeys)
 .build();

// Open multicast connection based on given configuration.
EMulticastConnection.openConnection(pubConfig);
EMulticastConnection.openConnection(subConfig);

Page of 160 212

Dispatcher

Monitoring eBus Connections
If there is a need to dynamically monitor eBus connection status (client, server, or multicast) then
subscribe to the following message keys, one for each eBus connection type:

client: net.sf.eBus.client.ConnectionMessage.MESSAGE_KEY

server: net.sf.eBus.client.ServerMessage.MESSAGE_KEY

multicast: net.sf.eBus.client.MulticastMessage.MESSAGE_KEY

Subscribe to the messages as follows (note - these messages are published to the local eBus JVM only):

(ESubscribeFeed.builder()).target(subscriber)
 .messageKey(ConnectionMessage.MESSAGE_KEY)
 .scope(FeedScope.LOCAL_ONLY)
 .condition(condition)
 .build();

eBus sends updates as a connection goes through the process of connecting, disconnecting, accepting,
or joining a multicast group. Since there is no way to retrieve the current status (at this time) it is best to
put the subscription(s) in place before opening connections or services. 

Page of 161 212

eBus Programmer’s Manual

Dispatcher
eBus uses a Dispatcher to forward messages to client. While Dispatchers cannot be accessed by an
application, an application can configure Dispatchers. In order to configure a Dispatcher, you need to
know how Dispatchers work.

eBus wraps client callbacks in Runnable task instances. Each eBus client has an Queue<Runnable>
containing the callback tasks for the client. So when a callback task is created, it is added to the client’s
task queue. When the client task queue is empty and no callback task is being run, then the client is idle.
When a new callback task is added to an idle client, then the client becomes runnable.

When a client transitions from idle to runnable, then the client is added to its Dispatcher run queue. Each
client is associated with one Dispatcher run queue. A Dispatcher has a run queue of runnable clients and
one or more threads watch the run queue for runnable clients to arrive. One thread removes the client
from the run queue and then starts executing the client’s queue tasks. The client is now in the running
state.

The queued client tasks are executed until either the task queue is empty or the client exhausts its run
quantum. If a run quantum is used, then it is reset to the configured amount when the client transitions
from idle to runnable or when the quantum is exhausted. When exhausted, the client transitions from
running to runnable and put back on the LIFO run queue.

Note: eBus does not use a preempting run quantum. If a client callback goes into an infinite loop, then
that callback will take over the Dispatcher thread. The Dispatcher thread only checks if the quantum is
exceeded when the callback returns. Since the callback in this example never returns, the Dispatcher
thread does not detect that the run quantum is exceeded.

Dispatchers are configured using the following parameters. Note that Dispatcher configuration must be
done using a properties file and the -Dnet.sf.eBus.config.file=<properties file path> or
-Dnet.sf.eBus.config.jsonFile=<config file path> Java command line parameter.

eBus Clients Are Single-Threaded
An eBus object is associated with a single Dispatcher. An eBus object exists in one of three states: idle,
runnable, and running. Only when in the runnable state does the eBus client appear on the Dispatcher
run queue and then only once at any given time. When a Dispatcher thread removes the eBus object
from the run queue, then it is the only Dispatcher thread to acquire that object at any given time. It also
means that the eBus object is no longer on the run queue.

In summary, an eBus object is either:

1. Idle: Not on the run queue and not accessed by a Dispatcher thread.
2. Runnable: On the run queue and not accessed by a Dispatcher thread.
3. Running: Not on the run queue and accessed by a Dispatcher thread.

This means that at most one Dispatcher thread has access at any one moment. Therefore, the eBus call
out to objects is effectively single-threaded. The good news is that if an application object is not accessed
by non-eBus Dispatcher threads, then that object does not have to use synchronization to protect its data
members.

If an application object is accessed by non-eBus Dispatcher threads (java.util.Timer for instance),
then the object will need to protect its data members against multi-threaded updates.

Page of 162 212

Dispatcher

Active and Hybrid Objects
The reason why hybrid object feeds must target their parent active object should now be apparent:
because the hybrid object shares its parent active object's Dispatcher. While the hybrid object's method
processes the message, that message is posted to the active object's queue. So the active object
remains single threaded but subordinates message processing to its hybrid objects.

Dispatcher now comes in four (!) flavors
Dispatcher now provides four different ways of polling the next available client from the run queue:

1. Blocking. Dispatcher thread blocks on Queue.poll() until a non-null client is returned. This
technique is the most CPU-friendly but also the slowest since the thread will likely lose its core while
blocked and must wait to come back on core to complete Queue.poll() call. 
 
The run queue is implemented as java.util.concurrent.LinkedBlockingQueue. 
 
This is the default Dispatcher polling type.

2. Spinning. Dispatcher thread continuously calls Queue.poll() until a non-null client is returned.
Since poll() is implemented as non-blocking, this method the most CPU-unfriendly but the fastest
since the thread will likely remain on core.  12

 
The run queue is implemented as java.util.concurrent.ConcurrentLinkedQueue.

3. Spin+Park. Dispatcher thread calls Queue.poll() until either a non-null client is returned or the
spin limit is reached. If the spin limit is reached, then LockSupport.park(long nanos) is called.
yielding the core to another thread for the specified time. When the park completes, the spin count is
reset and the thread goes back to spinning. This method is more CPU-friendly than pure spinning and
faster than blocking. This technique is open to wider performance variance than spinning. 
 
The run queue is implemented as java.util.concurrent.ConcurrentLinkedQueue.

4. Spin+Yield. Similar to spin+park except the thread parks indefinitely (LockSupport.park()). This
method is even more CPU-friendly than spin+park but with greater performance variance. 
 
The run queue is implemented as java.util.concurrent.ConcurrentLinkedQueue.

Combining eBus Dispatcher and non-eBus Threads
Using non-eBus threads matter only when eBus clients run on those threads. When this occurs critical
sections are introduced back into the eBus clients. If the non-eBus threads do not interact with eBus
clients, then there are no critical sections to worry about. If it is necessary for an eBus client to interact
with a non-eBus thread, there are two ways to handle the critical section:

1. Synchronize. This is the best known solution. Wrap the critical section inside a synchronize block
or Lock being careful to make this synchronized region as small as possible. If the critical section can
be handled by an atomic, so much the better. If the synchronization is un-contended for most of the
time (99% or better?), then this solution adds little overhead to performance. This solution is preferred

 See Appendix E: Configuing Thread Affinity to learn how to "pin" a spinning Dispatcher thread to a core 12

isolated from the operating system.

Page of 163 212

eBus Programmer’s Manual

if there is a high level of interaction between non-eBus thread and eBus client. The problem is
correctly identifying the critical sections and their minimal size.

2. Dispatch. When the non-eBus needs to interact with an eBus client, it can wrap the code up in a
Runnable and post it to the client via net.sf.eBus.client.EClient.dispatch(Runnable,
EObject). This solution introduces a thread-handoff to every interaction which is not trivial. But if
there is occasional interaction between the non-eBus thread and eBus client, this solution is preferred
because critical sections do not need to be identified and fits it with how the eBus client operates.

The following code demonstrates how a non-eBus thread can dispatch a callback to an eBus client
EClient.dispatch and a lambda expression.

public final class ValueAddedPublisher implements EPublisher, ESubscriber {
 // EPublisher, ESubscriber interface implemented here.
 // The next method is used to handle a non-eBus event provided by a
 // non-eBus thread. This event is left to the reader’s imagination.
 public void handleOutsideEvent(final NonEBusEvent event) {
 // Put event handling code here.
 }
}

The non-eBus thread run method passes information to the ValueAddedPublisher instance stored in
the data member mEventHandler as follows:

public void run() {
 // Do thread work here.
 // Does ValueAddedPublisher need to know about something?
 if (event has occurred) {
 // Yes. Forward the information to the ValueAddedPublisher instance.
 final NonEBusEvent event = new NonEBusEvent(...);
 EClient.dispatch(() -> mEventHandler.handleOutsideEvent(event),
 mEventHandler);
 }
}

Special Dispatchers
There are two special, pre-defined Dispatchers which go by the names “swing” and “javafx” (case
insensitive). These Dispatchers use the Swing and JavaFX GUI threads, respectively, to deliver eBus
messages to those clients associated with the Dispatcher. This means that the client callback is free to
update the GUI because the callback code is running on the GUI thread.

These special Dispatchers only support two properties: isDefault and classes. All other properties
are quietly ignored by eBus. The reason is that the underlying GUI threads are implemented and
configured by the GUI package and cannot be altered by eBus.

It may be useful to define the GUI thread Dispatcher as the default Dispatcher and then create a separate
eBus Dispatcher for non-GUI classes. This way, an application class which updating the display will be
assigned to the GUI thread without needing to add that class to the GUI Dispatcher classes property.

Page of 164 212

Dispatcher

Monitoring Dispatchers
eBus release 6.1.0 introduced access to dispatcher run-time statistics by adding the static method
EClient.runTimeStats() which returns EClient.RunTimeStats list. These stats apply to the
existing EObject instances and include: minimum time on Dispatcher thread (in nanoseconds),
maximum time, total time, number of times on Dispatcher thread, average time, Dispatcher maximum run
quantum, and number of times eBus object exceeded Dispatcher run quantum.

eBus release 6.2.0 expanded run queue thread and eBus object monitoring with the singleton class
net.sf.eBus.client.monitor.RQMonitor. This monitoring includes:

Reporting run queue thread statistics at a configurable interval. These reports are
net.sf.eBus.client.monitor.RQThreadReport on RQMonitor.REPORT_SUBJECT.
Reporting eBus object statistics at the same configurable interval as the run queue thread report.
These reports are net.sf.eBus.client.monitor.EBusObjectReport notifications on
RQMonitor.REPORT_SUBJECT. Note that this report contains the same information as
EClient.runTimeStats() method.
Reporting when an eBus object is overrunning the dispatcher maximum quantum (plus a configurable
limit). An alarm is raised via net.sf.eBus.client.monitor.ThreadOverrunUpdate
notification on RQMonitor.RQALARM_SUBJECT.
Reporting when a run-ready eBus object is denied access to a run queue thread for too long (again
how long is configurable). An alarm is raised via
net.sf.eBus.client.monitor.ThreadDenialUpdate notification on
RQMonitor.RQALARM_SUBJECT.

Alarms are raised when a condition transitions from cleared to alarmed or from alarmed to cleared. The
run queue report contains the current thread alarm state.
RQMonitor also implements net.sf.eBus.util.logging.StatusReporter interface and will add
run queue thread and eBus object stats to the net.sf.eBus.util.logging.StatusReport if the
RQMonitor is started and registered with StatusReport.

Dispatcher Configuration
Name: Dispatchers list.
Description: a JSON array of EConfigure.Dispatcher configurations. Dispatcher names should be
unique (no duplicates). All duplicates are logged and ignored. The dispatcher name is used to retrieve the
remaining keys. If using Swing or JavaFX GUI Dispatcher, then place the name “swing” or “javafx” here.
Type: String
Optional? Yes.
Check: None.
Default: A single blocking dispatcher with java.lang.Thread.NORM_PRIORITY and no run quantum.
Used for all eBus clients.
Keyword: dispatchers

Name: Dispatcher thread name.
Description: Dispatcher thread name unique within the
Type: int
Optional? No.
Check: > zero.
Default: net.sf.eBus.client.eConfigure.DEFAULT_NUMBER_THREADS
Keyword: name

Page of 165 212

eBus Programmer’s Manual

Name: Dispatcher thread count.
Description: Number of threads assigned to this dispatcher.
Type: int
Optional? No.
Check: > zero.
Default: net.sf.eBus.client.eConfigure.DEFAULT_NUMBER_THREADS
Keyword: numberThreads

Name: Dispatcher run queue type.
Description: How dispatcher threads poll the run queue.
Type: String
Optional? Yes.
Check: Must be either blocking, spinning, spin+park, or spin+yield (case-insensitive). Matches
a net.sf.eBus.config.ThreadType text name.
Default: net.sf.eBus.client.ThreadType.BLOCKING
Keyword: runQueueType

Name: Dispatcher spin limit.
Description: The number of times a dispatcher thread calls Queue.poll() before parking or yield.
Type: int
Optional? Required if .runQueueType is set to spin+park or spin+yield. Ignored otherwise.
Check: > zero.
Keyword: spinLimit

Name: Dispatcher park time.
Description: Park time after dispatcher thread reaches spin limit.
Type: java.time.Duration
Optional? Required if runQueueType is set to spin+park. Ignored otherwise.
Check: > zero.
Keyword: parkTime

Name: Dispatcher thread priority.
Description: The priority given to each of the dispatcher threads.
Type: int
Optional? Yes.
Check: Must be ≥ java.lang.Thread.MIN_PRIORITY and ≤ java.lang.Thread.MAX_PRIORITY.
Default: java.lang.Thread.NORM_PRIORITY
Keyword: priority

Name: Client run quantum
Description: Client task processing time quantum.
Type: java.time.Duration
Optional? Yes.
Check: > zero.
Default: net.sf.eBus.client.eConfigure.DEFAULT_QUANTUM
Keyword: quantum

Name: Default dispatcher flag.
Description: If true, then marks this as the default dispatcher for clients that are not explicitly assigned
to a dispatcher.
Type: boolean
Optional? Yes.
Check: None.
Default: false

Page of 166 212

Dispatcher

Keyword: isDefault

Name: Dispatcher client classes.
Description: Clients instantiated from the specified classes are assigned to this dispatcher.
Type: JSON typesafe array of class names. Names should be unique.
Optional? No if isDefault property is false; otherwise is ignored.
Check: List length > zero and all named classes are known.
Default: None.
Keyword: classes

The following shows how to configure eBus Dispatchers using JSON:

dispatchers : [
 {
 name : mdDispatcher
 numberThreads : 1
 runQueueType : spinning
 priority : 9
 quantum : 10000ns
 isDefault : false
 classes : ["com.acme.trading.MDHandler"]
 threadAffinity { // optional, selector thread core affinity
 affinityType : CPU_ID // required, core selection type.
 cpuId : 7 // required for CPU_ID affinity type
 bind : true // optional, defaults to false
 wholeCore : true // optional, defaults to false
 },
 {
 name : defaultDispatcher
 numberThreads : 1
 runQueueType : "spin+park"
 priority : 4
 quantum : 100000ns
 isDefault : true
 spinLimit : 2500000
 parkTime : 1000ns
 }
]

eBus release 5.8.0 introduced thread affinity for dispatcher threads. This affinity is created when adding
threadAffinity property to the dispatcher configuration.

Thread affinity is recommended especially for dispatcher threads configured as spinning since a thread
doing hard spinning is not amenable to pre-emption. Also be sure to isolate the selected core from
operating system use. Otherwise the spinning thread may still be pre-empted by the OS for its own
particular use.

Please note: threadAffinity property is only supported in JSON configuration files and not in Java
properties files.

See Appendix E: Configuring Thread Affinity for a detailed discussion on using thread affinity.

eBus release 6.4.1 added method
net.sf.eBus.client.EFeed.createDispatcher(Configure.Dispatcher) allowing a
Dispatcher and its subordinate thread(s) to be created dynamically post-JVM initialization. The Dispatcher
configuration is created using a DispatcherBuilder instance which can be acquired from
net.sf.eBus.config.EConfiure.dispatcherBuilder() static method. The Dispatcher
configuration is that same a noted in section Dispatcher Configuration.

Page of 167 212

eBus Programmer’s Manual

Programmatic Dispatcher Configuration
An eBus dispatcher can be created using
net.sf.eBus.config.EConfigure.DispatcherBuilder. The following example shows how this
can be done creating a single-thread Dispatcher pinned to a specific CPU core and spinning on the
ready EClient queue. This dispatcher is used for a singleton MarketDataHandler instance.

NOTE: This example only works if the dispatcher is created before MarketDataHandler is
instantiated. If not, the MarketDataHandler instance will be assigned to the default Dispatcher.

import net.sf.eBus.client.EFeed;
import net.sf.eBus.config.EConfigure.Dispatcher;
import net.sf.eBus.config.EConfigure.DispatcherBuilder;
import net.sf.eBus.config.EConfigure.DispatcherType;
import net.sf.eBus.config.EConfigure.ThreadAffinityConfigure;
import net.sf.eBus.config.ThreadType;

public static void main(final String[] args) {
 final Class[] eclients = new Class[] { MarketDataHandler.class };
 final ThreadAffinityConfigure[] threadAffinity =
 new ThreadAffinityConfigure[] {…};
 final DispatcherBuilder builder = EConfigure.dispatcherBuilder();
 final Dispatcher dispatcher = builder.name("MyDispatcher")
 .dispatcherType(DispatcherType.EBUS)
 .threadType(ThreadType.SPINNING)
 .numberThreads(1)
 .isDefault(false)
 .classes(eclients)
 .threadAffinity(threadAffinity)
 .build();

 EFeed.createDispatcher(dispatcher);
}

See eBus javadocs for EConfigure.Dispatcher and EConfigure.DispatcherBuilder for more
information on programmatically creating a dispatcher. 

Page of 168 212

Dispatcher

Page of 169 212

eBus Programmer’s Manual

Gentlemen, start your objects
In Dispatcher, it was shown that eBus contacts application objects in a single-threaded fashion and that
application objects do not require synchronization as long as non-eBus threads do not access those
objects. But there is a catch. Consider the following value-added publisher ;

public final class ValueAddedPublisher implements EPublisher, ESubscriber {
 private final EMessageKey mPubKey;
 private final EMessageKey mSubKey;
 private EPublishFeed mPubFeed;
 private ESubscribeFeed mSubFeed;

 public ValueAddedPublisher(final EMessageKey pubKey,
 final EMessageKey subKey) {
 mPubKey = pubKey;
 mSubKey = subKey;
 }

 public void start() {
 mSubFeed = (ESubscribeFeed.builder()).target(this)
 .messageKey(mSubKey)
 .scope(FeedScope.LOCAL)
 .build();
 mSubFeed.subscribe();

 // Race condition between feedStatus callback and the next two lines.
 mPubFeed = (EPublishFeed.builder()).target(this)
 .messageKey(mPubKey)
 .scope(FeedScope.LOCAL)
 .build();
 mPubFeed.advertise();
 }

 @Override public void publishStatus(final EFeedState feedState,
 final EFeed pubFeed) {
 // Application-specific code here.
 }

 @Override public void feedStatus(final EFeedState feedState,
 final IESubscribeFeed feed) {
 // If the subscription feed is up, the publish feed is up.
 // If the subscription feed is down, the publish feed is down.
 // BUT IS mPubFeed OPEN AND ADVERTISED YET?
 // Perhaps not. In that case, the following code will fail.
 mPubFeed.updateFeedState(feedState);
 }

 @Override public void notify(final ENotificationMessage msg,
 final IESubscribeFeed feed) {
 // Application-specific code here.
 }
}

Page of 170 212

Gentlemen, start your objects

The above class is created and started by the application main thread:

public static void main(final String[] args) {
 final EMessageKey pubKey = new EMessageKey(OutputMessage.class, args[0]);
 final EMessageKey subKey = new EMessageKey(InputMessage.class, args[0]);
 final ValueAddedPublisher vaPublisher =
 new ValueAddedPublisher(pubKey, subKey);

 // vaPublisher starting life on the application’s main thread.
 // Note: start-up is synchronous.
 vaPublisher.start();

 // More application code. Will reach here after start-up completes.
}

The race condition is due to vaPublisher being started in the application main thread and feedStatus
called out by an eBus Dispatcher thread. One way to resolve this is to synchronize the start and
feedStatus methods. But this adds overhead to all feedStatus calls just to handle the one-time
object start.

Another solution is to notice that by switching the publish feed to open and advertise before the
subscription, the problem goes away. But what if ValueAddedPublisher opened more feeds and the
interaction between those feeds was more complex? Depending on a correct start up sequence to get
away from synchronization is not robust solution.

What if ValueAddedPublisher could be started on an eBus Dispatcher thread? That guarantees that
feedStatus will be called only after the object start completed. eBus v. 4.3.0 provides a mechanism to
do just that.

A new interface net.sf.eBus.client.EObject was introduced which contains two default method
declarations:

default void startup() {}
default void shutdown() {}

Interfaces EPublisher, ESubscriber, EReplier, and ERequestor all extend EObject. By changing
the start method to:

@Override public void startup()

vaPublisher can now be started on the Dispatcher thread by registering it with eBus and then having
eBus start up vaPublisher:

public static void main(final String[] args) {
 final EMessageKey pubKey = new EMessageKey(OutputMessage.class, args[0]);
 final EMessageKey subKey = new EMessageKey(InputMessage.class, args[0]);
 final ValueAddedPublisher vaPublisher =
 new ValueAddedPublisher(pubKey, subKey);

 // vaPublisher starting life on a Dispatcher thread.
 // Note: start-up is now asynchronous.
 EFeed.register(vaPublisher);
 EFeed.startup(vaPublisher);

 // More application code. Will reach here before start-up completes.
}

Page of 171 212

eBus Programmer’s Manual

As the comments note, the vaPublisher start-up is switched from synchronous to asynchronous. It is
up to the application to coordinate object start-up with the main thread if the main thread cannot proceed
until object start-up completes.

The above code shows the application shows main starting up a single object, vaPublisher. EFeed
has two other start-up methods:

public static void startup(final Set<EObject> clients)

public static void startupAll()

The first is useful when starting up a batch of specific application objects. This could be used when
implementing a multi-tier start-up. For example, you have one specific object whose feeds must all be
EFeedState.UP before starting the second object tier. The first tier object is started using
EFeed.startup(EObject). When that first tier object detects that all its feeds are up, then it calls
EFeed.startup(Set<EObject>) on the second tier objects.

But a more common start-up technique is to create and register all the application objects and then call 13

EFeed.startupAll(). This method starts up all registered application objects that were not previously
started or implicitly registered. With this technique, the application does not need to gather up all the 14

registered objects into a Set and explicitly start up those objects. Less bookkeeping is easier.

eBus also supports object shutdown with the following EFeed methods:

public static void shutdown(final EObject client)

public static void shutdown(final Set<EObject> clients)

public static void shutdownAll()

Like object start-up, these methods call shutdown() from object’s Dispatcher thread. The first two
method shutdown specific objects. The third method shuts down all previously started objects. When an
object’s shutdown completes, that object may be started again without registering the object again.

Shutting down an object does not de-register the object from eBus. Once an object is registered with
eBus, it remains registered until the object is finalized.

EFeed.shutdownAll() is the easier way to shutdown all registered application objects when
terminating the application, if a clean termination is required for a distributed system. 

 Be sure the application maintains a strong reference to those registered objects or they will be GC’d.13

 An application object is implicitly registered when it opens a feed.14

Page of 172 212

Gentlemen, start your objects

Pinning Application Objects to a Dispatcher
The Dispatcher section mentions that an eBus properties configuration does not support object-level
Dispatcher association, only classes can be associated with a Dispatcher. With eBus v. 4.3.0,
EFeed.register() can be used to dynamically assign an application object with a Dispatcher. There
are two EFeed registration methods which support this:

public static void register(final EObject object,
 final String dispatcherName)

public static void register(final EObject object,
 final String dispatcherName,
 final Runnable startCb,
 final Runnable shutdownCb)

In both cases, object is associated with the eBus Dispatcher named dispatcherName. The eBus
configuration must contain a Dispatcher with that name, otherwise an IllegalArgumentException is
thrown.

The second method allows the caller to use lamba expressions to define object’s start-up and shutdown
behavior.

Going back to the Dispatcher example configuration, a new Dispatcher configuration may be added:

eBus.dispatchers=priorityDispatcher, mdDispatcher, defaultDispatcher

Priority market data handlers are posted to a single-thread Dispatcher
and that thread is pinned to a core which is isolated from the OS.
eBus.dispatcher.priorityDispatcher.threadCount=1
eBus.dispatcher.priorityDispatcher.priority=10
eBus.dispatcher.priorityDispatcher.quantum=10000
eBus.dispatcher.priorityDispatcher.isDefault=false
eBus.dispatcher.priorityDispatcher.classes=

Now MDHandler instances identified as high priority can be registered to “priorityDispatcher”.

Registration Gotchas
An application object can only be registered with eBus if it is not already registered. Otherwise, an
IllegalStateException is thrown.

The problem is that an application object is implicitly registered with eBus when it opens a feed. The
application object must be registered before opening any feeds. But this will be the case when registering
the object prior to calling EFeed.startup and the feeds are opened in the startup() method.

Note: when objects are implicitly registered, startup() is not called.

Another problem is that once an object is posted to a Dispatcher, that posting cannot change. So it is no
possible to switch the object between Dispatchers during the object’s lifetime. The only solution is to
shutdown the object and create a replacement object which is then pinned to another Dispatcher.

As noted before, eBus maintains only a weak-reference to application objects. So when calling
EFeed.register(EObject object), be sure the application keeps a strong reference to object.
Failure to do so will guarantee object is finalized in the next garbage collection. 

Page of 173 212

eBus Programmer’s Manual

State of the Union: eBus and SMC
A call stack provides the context for synchronous communication. A new stack frame is pushed on top of
a call stack when calling a subroutine and the subroutine arguments are written into the stack frame. On
returning from the subroutine, the top stack frame is popped off the stack and the return value copied to
the new top frame. This returns the software back to the context of the subroutine call, the context needed
to interpret the returned value.

But when sending an eBus request, the call stack that existed when the request was made is irretrievably
gone when the asynchronous reply is delivered, taking its context with it. So how can context be
maintained in the face of asynchronous messaging?

The industry standard solution is to use a finite state machine for asynchronous context. The current state
defines how an object responds to a transition where the transition contains the message. This section
shows how to define and integrate a finite state machine into an object and how to translate eBus
callbacks into a state machine transition.

SMC: the State Machine Compiler takes a state machine definition and generates code in a target which
implements that state machine. This section defines a state machine for an object that subscribes to a
data point feed and publishes the moving average calculated from those data points.

Note: this section does not describe the SMC syntax or compiler settings used to generate the Java code
which implements the state machine. This is covered thoroughly in the SMC Programmer’s Manual
available at the SMC website.

Demo Architecture
This demonstration consists of three components:

Source: publishes integer data points in the [min, max) range at a configurable millisecond rate. Data
point publishing is triggered using net.sf.eBusx.util.Timer.

Calculator: subscribes to the data point feed and publishes the calculated moving average. The
moving average size is configurable. Uses a finite state machine to decide when to publish a moving
average message.

Sink: subscribes to the moving average feed and outputs the received messages to the console.

This section presents the calculator finite state machine and shows how to integrate that state machine
into the Calculator class and into eBus.

Page of 174 212

http://smc.sourceforge.net

State of the Union: eBus and SMC

Calculator State Machine
There are five states in the Calculator FSM:

1. Initializing: This is the FSM start state. When entered, the data point subscription and moving
average publishing feeds are opened. Calculator waits in this state for the data point feed to come
up.

2. FeedDown: If the data point feed goes down after coming up, then the FSM goes immediately to this
state from whatever state it is currently in. Upon entry, the moving average feed is marked as down
and all moving average calculations are cleared. Calculator waits in this state for the data feed to
come back up.

3. Collecting: Wait in this state, collecting data points until enough are collected to calculate the first
moving average. When this happens move to the Publishing state.

4. Publishing: Publishes a new moving average each time a data point is received. Upon entry, the
moving average feed is marked up and the first moving average notification message is published.

5. Shutdown: Enter this state when the demo is shut down.

There is a sixth “state” named Default. This is not a real state but is used to define a transition’s default
behavior if not explicitly defined in a state. One example is the shutdown transition. It is not defined in
any state, so the Default state defines the global shutdown transition for all states. In this case,
shutdown closes the data point subscription and moving average publishing feeds and goes to the
Shutdown state.

What follows is the Calculator FSM definition which is stored in file Calculator.sm. Again, see the
SMC Programmer’s Manual for a detailed description of the SMC syntax.

%class Calculator // Associates FSM with the Calculator class.
%package smcdemo
%fsmclass CalculatorFSM // FSM defined in class CalculatorFSM
%fsmfile CalculatorFSM // FSM class stored in file CalculatorFSM.java
%access package // Actions defined in Calculator class with package-private access.

%import net.sf.eBus.client.EFeedState
%import net.sf.eBus.client.IESubscribeFeed
%import net.sf.eBus.messages.ENotificationMessage

%start CalculatorMap::Initializing // Defines FSM start state.

%map CalculatorMap
%%

// When the system starts, put the eBus feeds in place.
Initializing Entry {startFeeds();} {
 // When the feed state comes up, start collecting data points.
 // Note: transition signature matches
 // ESubscriber.feedStatus(EFeedState, IESubscribeFeed)
 feedState(feedState: final EFeedState, feed: final IESubscribeFeed)
 [feedState == EFeedState.UP]
 Collecting {}

 // Wait here for the feed to come up. nil is an internal loopback transition.
 feedState(feedState: final EFeedState, feed: final IESubscribeFeed)
 nil {}
}
// Wait here for the feed to come up.

Page of 175 212

eBus Programmer’s Manual

FeedDown Entry {setPubState(EFeedState.DOWN); clearStats();} {
 // When the feed state comes up, start collecting data points.
 feedState(feedState: final EFeedState, feed: final IESubscribeFeed)
 [feedState == EFeedState.UP]
 Collecting {}

 // Wait here for the feed to come up.
 feedState(feedState: final EFeedState, feed: final IESubscribeFeed)
 nil {}
}

// Wait here until enough data points are in hand to publish the moving average.
Collecting {
 // When the required number of data points are collected, then start publishing.
 // Note: transition signature matches
 // ESubscriber.notify(ENotificationMessage, IESubscribeFeed)
 data(msg : final ENotificationMessage, feed: final IESubscribeFeed)
 [ctxt.addData(((DataPoint) msg).data)]
 Publishing {}

 // Continue collecting.
 data(msg : final ENotificationMessage, feed: final IESubscribeFeed)
 nil {}
}

// Publish the updated moving average every time a new data point is received.
Publishing Entry {setPubState(EFeedState.UP); publish();} {
 data(msg : final ENotificationMessage, feed: final IESubscribeFeed)
 nil
 {addData(((DataPoint) msg).data); publish();}
}

// The system is shutting down.
Shutdown {
 // Stay here forever.
 Default nil {}
}

// Default transitions.
Default {
 // When the feed state goes down, go immediately to FeedDown.
 // Do not pass go. Do not collect $200.
 feedState(feedState: final EFeedState, feed: final IESubscribeFeed)
 [feedState == EFeedState.DOWN]
 FeedDown {}

 // Otherwise, ignore the feed state going up when it is already up.
 feedState(feedState: final EFeedState, feed: final IESubscribeFeed)
 nil {}

 // Ignore unexpected data points.
 data(msg : final ENotificationMessage, feed: final IESubscribeFeed)
 nil {}

 shutdown()
 Shutdown
 {stopFeeds();}
}

%% // end of CalculatorMap

Page of 176 212

State of the Union: eBus and SMC

Integrating the FSM into Calculator
The SMC-generated finite state machine is integrated into the Calculator class by creating a data
member to store the FSM instance, instantiating the FSM, and defining the FSM action methods:

public final class Calculator
 implements ESubscriber, EPublisher {

 // FSM class name matches %fsmClass CalculatorFSM in SMC definition.
 private final CalculatorFSM mFsm;

 public Calculator(final int size, final String subject) {
 // Pass this calculator reference to the FSM which allows the FSM to
 // call Calculator methods.
 mFsm = new CalculatorFSM(this);
 ...
 }

 // The following methods are accessed by the FSM in the Entry and
 // transition action bodies.
 // Methods have package-private access to match “%access package” in
 // Calculator.sm.

 /* package */ void startFeeds() { ... }

 /* package */ void stopFeeds() { ... }

 /* package */ void setPubState(final EFeedState feedState) { ... }

 /* package */ void clearStats() { ... }

 /* package */ boolean addData(final int dataPoint) { ... }

 /* package */ void publish() { ... }
}

Page of 177 212

eBus Programmer’s Manual

Integrating the FSM into eBus
This integration occurs when the Calculator instance is registered with eBus and when the data point
subscription and moving average publishing feeds are opened.

/* package */ void register() {
 // Enter into the FSM's start state on start-up and issue a shutdown
 // transition on shut down.
 // Self registration is done because main cannot access mFsm in order to
 // set the start-up and shutdown callbacks.
 EFeed.register(this,
 EFeed.defaultDispatcher(),
 mFsm::enterStartState, // SMC-generated method.
 mFsm::shutdown);
}

/* package */ void startFeeds() {
 // Subscribe feed updates are converted directly into FSM transitions.
 // These two lines integrate eBus into the FSM.
 // Note: the feedState and data transition signatures must match the ESubscriber
 // callback signatures.
 mSubFeed = (ESubscribeFeed.builder()).target(this)
 .messageKey(mSubKey),
 .scope(EFeed.FeedScope.LOCAL_ONLY)
 .statusCallback(mFsm::feedState)
 .notifyCallback(mFsm::data)
 .build();
 mSubFeed.subscribe();

 mPubFeed = (EPublishFeed.builder()).target(this)
 .messageKey(mPubKey)
 .scope(EFeed.FeedScope.LOCAL_ONLY)
 .build();
 mPubFeed.advertise();
}

// Ignore publish status updates.
@Override public void publishStatus(final EFeedState feedState,
 final IEPublishFeed feed)
{}

Now eBus callbacks to the Calculator instance will be routed directly to FSM transitions and the FSM
defines the Calculator response to that callback.

I. The combination of SMC and Lambda expressions makes it simple to integrate an FSM into your
class and eBus. This technology is useful when defining a class with complex behavior, behavior
that is beyond the capability of an enum and switch statements.

The complete code demonstrating how an SMC-generated finite state machine can be integrated into
eBus is available from http://sourceforge.net/projects/ebus and stored in the release Utilities folder under
SmcDemoSrc_x_y_z.tgz where x_y_z is the eBus version. 

Page of 178 212

http://sourceforge.net/projects/ebus

State of the Union: eBus and SMC

Page of 179 212

Going Mobile

Going Mobile 15

eBus release 6.6.0 provides changes allowing the eBus API to be used on an Android mobile device.
These changes include:

Remove use of java.lang.management package since this is not supported on Android
Runtime (ART).

Set unique JVM identifier to UUID.randomUUID() rather than
ManagementFactory.getRuntimeMXBean().getName().

Add util package method ERuntime.isAndroid() to determine if eBus is running on ART
rather than a Java virtual machine.

Remove dependence on javassist API since that generates Java byte code which ART uses
Dalvik byte code (done in eBus release 6.5.0 with
net.sf.eBus.messages.type.InvokeMessageCompiler and InvokeMessageType). If
eBus detects it is running on ART (see previous point) it automatically sets the message compiler
to InvokeMessageCompiler.

eBus release 6.6.0 has been successfully tested on an Android emulator and demonstrated the ability to
establish a clear text TCP and UDP connection to a JVM-based eBus application, both sending and
receiving messages between the eBus applications. What was not tested was the ability to establish a
secure TCP (using TLS), or secure UDP (using DTLS) connection.

The eBus API is used on Android just as on a JVM. The main difference is that
-Dnet.sf.eBus.config.jsonFile=eBus config file cannot be used on Android. Dispatcher and
Selector threads must be configured programmatically on Android. See sections Dynamic Selector
Definition and Programmatic Dispatcher Configuration for more information.

Since eBus delivers inbound messages and events on a Dispatcher thread, it is up to the Android
developer to use android.os.Handler, android.os.Looper, and android.os.Message classes
to post updates to the Android user interface (UI) thread. 

 From "Going Mobile" lyrics by Peter Townsend.15

Page of 181 212

eBus Programmer’s Manual

Page of 182 212

Time, Gentlemen!

Time, Gentlemen!
eBus dispatcher delivers messages to application objects such that an object is accessed by only one
eBus thread at a time so that the application object is effectively single threaded. But if the application
object interacts with other non-eBus threads, that single threaded guarantee is lost.

One common use of a non-eBus thread is either java.util.Timer or
java.util.concurrent.ScheduledExecutorService (preferred). There is a definite need for
timers in an application. When the timer expires and the target method is called, the application has two
choices: either synchronize data access or use EClient.dispatch(Runnable, EClient) to transfer
control from the non-eBus thread back to an eBus thread. But doing that introduces delay.

eBus release 7.3.0 introduces net.sf.eBus.time.EScheduledExecutor. This class has a similar
interface to java.util.concurrent.ScheduledExecutorService but requires an EObject as the
second argument and does not support scheduling a java.util.concurrent.Callable nor
implements java.util.Executor or java.util.ExecutorService interfaces. When
EScheduledExecutor detects an active timer expiration, it passes the scheduled task and application
object to EClient.dispatch. This means the timer task is processed by an eBus thread.16

There are three EScheduledExecutor schedule methods:

IETimer schedule(Runnable task, EObject eobject, Duration delay) 
Submits a single-shot task which expires after the given delay. Use returned IETimer.close() to cancel
active timer.
IETimer scheduleAtFixedRate(Runnable task, EObject eobject, Duration
initialDelay, Duration period)
Submits a periodic task which expires for the first time after the initial delay and then repeatedly at the
periodic rate. In other words, expirations are initialDelay, then initialDelay + period,
then initialDelay + (2 * period), and so on. 
The given task will continue to be indefinitely executed until one of the following occurs:

The task is explicitly canceled via the returned IETimer instance.
The client is garbage collected.
The executor is terminated resulting in all scheduled tasks being canceled.
The tasks's execution results in a thrown exception.

Once a timer is canceled, subsequent executions are suppressed and isDone returns true. 
If any task execution takes longer than its period, then subsequent executions may start late but will
not result in multiple scheduled expirations.
IETimer scheduleWithFixedDelay(Runnable task, EObject eobject, Duration
initialDelay, Duration delay)
Submits a periodic task which expires for the first time after the initial delay and then repeatedly with
the given delay between the termination of the previous expiration and the commencement of the
next. This means that task execution time does not impact scheduling the subsequent expirations.
When the task completes, the next expiration is current time plus delay.

EScheduledExecutor does not support a delay or period ≤ zero. A repeating fixed delay or repeating fixed
period must be > zero. A zero single shot delay or initial delay must be ≥ zero.

 Actually the scheduled task is wrapped within a EScheduledExecutor.TimerTask which is used to 16

catch any Exception thrown by the scheduled task and automatically cancel the timer when caught.

Page of 183 212

eBus Programmer’s Manual

Creating an EScheduledExecutor
There are two ways to create an EScheduledExecutor: programmatically or in the eBus JSON
configuration file. Both can be used within the application. Either way every eBus scheduled executor
must have a unique thread name.

Note: eBus provides an executor named "CoreExecutor" in
net.sf.eBus.client.EClient.sCoreExecutor. This scheduler is a low priority thread and blocks
on the next timer expiration providing lower precision timing useful for most application needs.

Property Type Required? Default Description

name String Yes Unique thread
name.

thread type ThreadType Yes Thread type is
blocking, spinning,
spin+park, or
spin+yield

priority int No EConfigure.DEF
AULT_PRIORITY

Thread priority.

spin limit long Yes if thread
type is
spin+park or
spin+yield

How many times
thread will spin
waiting for timer
expiration before
parking or yield.

park time long Yes if thread
type is
spin+park.

How long thread
will park before
spinning again.

thread affinity List<ThreadAffinity>
ThreadAffinity[]

No thread affinity. Used to create
affinity between
thread and
processor core(s).

EScheduledExecutor Configuration Properties

Page of 184 212

Time, Gentlemen!

Programmatic eBus Scheduler Creation
import java.time.Duration;
import net.sf.eBus.config.EConfigure;
import net.sf.eBus.config.EConfigure.ScheduledExecutor;
import net.sf.eBus.config.EConfigure.ScheduledExecutorBuilder;
import net.sf.eBus.time.EScheduledExecutor;

// First build the schedule executor configuration.
final ScheduledExecutorBuilder builder = EConfigure.scheduledExecutorBuilder();
final ScheduledExecutor config = builder.name("FastTimer")
 .threadType(ThreadType.SPINPARK)
 .priority(8)
 .spinLimit(2_500_000)
 .parkTime(Duration.ofNanos(500L)
 .build();

// Then use that configuration to create the eBus scheduled executor.
final EScheduledExecutor executor = EScheduledExecutor.newScheduledExecutor(config);

JSON eBus Scheduler Creation
scheduledExecutors : [
 {
 name : "blocking-timer"
 threadType : "blocking"
 priority : 3
 },
 {
 name : "high-priority-timer"
 threadType : "spinning"
 priority : 10

 threadAffinity : [17

 {
 affinityType : CPU_ID
 cpuId = 7
 bind : true
 wholeCore : true
 }
]
 },
 {
 name : "low-priority-timer"
 threadType : "spin+park"
 priority : 7
 spinLimit : 2500000
 parkTime : 500 ns
 }
]

 See Appendix E: Configuring Thread Affinity for detailed explanation.17

Page of 185 212

eBus Programmer’s Manual

Page of 186 212

Keeping an Eye on Things

Keeping an Eye on Things
eBus provides monitoring at two levels: application and Dispatcher. Application level allows developer to
instrument eBus EObject code which reports both on-going and transient events occurring in the code.
Dispatcher level reports run queue thread events and periodically reports (at an application defined rate)
the run queue thread performance statistics.

Application Monitoring
Package net.sf.eBusx.monitor provides applications the ability to instrument and track eBus
EObject status. Monitor is the central class in this package. The very first step in using this package is
to open a Monitor instance with the application "builder plate" and optional attributes:

import net.sf.eBusx.monitor.Monitor;

final AppAttributes attributes =(AppAttributes.builder()).set attributes here.build();

// Note: if Monitor instance is already open, then does nothing.
final Monitor monitor = Monitor.openMonitor("MyOwnApp UAT 1",
 "MyOwnApp",
 "1.2.3",
 "Copyright (C) 2024 All Rights Reserved",
 "My very own little Java application",
 attributes);

where AppAttributes is an EField subclass containing attributes specific to this application. The
copyright, description, and attributes fields are optional and may be null. This application
information is both stored away for later retrieval and published to existing application info subscribers.

The first argument is the application's host name. Please note that this name is not necessarily the
network host name. Often times a network host name is a obtuse name meaning to the network support
staff. Monitor allows a name meaningful to application support to be used.

Please note: once the singleton Monitor instance is opened, it cannot be closed. It remains open as long
as the JVM is running.

Instrumenting EObjects
This section describes how to use Monitor to track and report an eBus EObject's on-going and transient
status. On-going status is just that: a status that is considered in effect from the moment it is reported to
when it is either updated or the eBus object is de-registered from the monitor. A transient status is an
event which has no impact on the on-going status.

The first step in instrumenting an eBus object is to register it with Monitor. The monitor instance is
acquired either from Monitor.openMonitor (as shown above) or via Monitor.getMonitor. Note
that getMonitor returns null if Monitor singleton was not opened. An eBus object is registered as
follows (consider this class to implement an EObject interface):

(Monitor.getMonitor().register(this);

Note: Monitor does not maintain a strong reference to this but a weak reference. This means that
registered eBus objects can be finalized while still registered to Monitor. Monitor detects this
finalization and automatically de-registers the object.

Page of 187 212

eBus Programmer’s Manual

A newly registered eBus object is given the following initial status:

Action level: ActionLevel.NO_ACTION

Action name: "Registered"

Action message: "Registered with monitor subsystem"

A registered eBus object is assigned a unique MonitorId which is used for reporting purposes only.
More about this identifier below.

Once registered, an eBus object may update its on-going (persistent) state as follows:

final Monitor monitor = Monitor.getMonitor();

monitor.update(ActionLevel.ACTION_REQUIRED,
 "Market data feed",
 "Ticker plant market data feed is DOWN",
 this);

When this condition is resolved, the eBus object should report this fact:

monitor.update(ActionLevel.NO_ACTION,
 "Market data feed",
 "Ticker plant market data feed is up",
 this);

An example of a transient status update would be posted when the market data feed is down, reporting
how long the condition has been in effect:

monitor.transientStatus(ActionLevel.ACTION_REQUIRED,
 "Market data feed",
 "Ticker plant market data feed down for " + downTimeInterval,
 this);

If a registered eBus object is to be discarded prior to application termination, it should be de-registered
from Monitor:

monitor.deregister(this);

A de-registered eBus object is given the following final status:

Action level: ActionLevel.NO_ACTION

Action name: "Deregistered"

Action message: "Deregistered from monitor subsystem"

Monitor reports object registration, on-going updates, transient updates, and de-registration using
MonitorUpdate notification message which contains the following fields:

host name (String): set in openMonitor.

application name (String): set in openMonitor.

monitor instance (MonitorID): assigned to eBus object when registered.

update type (UpdateType): specifies if eBus object is registered, on-going status update, transient
update, or de-registered.

action level (ActionLevel): set in update or transientStatus call.

Page of 188 212

Keeping an Eye on Things

action name (String): set in update or transientStatus call.

action message (String): set in update or transientStatus call.

These MonitorUpdate messages are published to the subject "/eBus/monitor/host name/app
name" where host name and app name are those used to open the Monitor instance.

Monitor also replies to ApplicationInfoRequest and MonitoredObjectRequest messages.
ApplicationInfoRequest reply (ApplicationInfoReply) contains the application host name,
application name, etc. MonitoredObjectRequest reply (MonitoredObjectReply) contains the
latest PersistentStatusMessage for all currently registered eBus objects.

This leads to the next section.

Monitoring eBus applications
The first step is to establish a remote connection to all the eBus applications which will be monitored.
Of course the local JVM may be monitored as well.

The second step is to subscribe to those Monitor-published notifications in which you are interested. As
mentioned above, Monitor publishes updates using a subject based on the configured host name and
application name. If ESubscribeFeed is used to subscribe to Monitor updates, then a subscription
must be created for all host name, application name pairs. This means that monitored hosts and
applications are fixed and known prior to subscribing. If this list is dynamic, there must be a way to add or
remove pairs.

eBus provides a way to subscribe to all monitor update subjects rather that to each specific host,
application name pair: EMultiSubscribeFeed using an eBus pattern as the "subject". The following
code demonstrates how to use an EMultiSubscribeFeed to receive monitor updates:

import static net.sf.eBus.client.EFeed.FeedScope;
import net.sf.eBus.client.EMultiSubscribeFeed;
import net.sf.eBus.client.IESubscribeFeed;
import net.sf.eBus.util.regex.Pattern;
import net.sf.eBusx.monitor.ApplicationInfo;
import net.sf.eBusx.monitor.Monitor;
import net.sf.eBusx.monitor.MonitorUpdate;

private EMultiSubscribeFeed mAppInfoFeed;
private EMultiSubscribeFeed mUpdateFeed;

@Override public void startup() {
 final Pattern multiUpdateSubject =
 // Put ".+" in host and application name subject portions to accept updates
 // from all hosts and applications.
 Pattern.compile(String.format(Monitor.MONITOR_UPDATE_FORMAT, ".+", ".+");

 mAppInfoFeed =
 (EMultiSubscribeFeed.build()).target(this)
 .messageClass(ApplicationInfo.class)
 .scope(FeedScope.LOCAL_AND_REMOTE)
 .query(multiUpdateSubject)
 .statusCallback(this::onAppInfoFeedStatus)
 .notifyCallback(this::onAppInfoUpdate)
 .build();
 mUpdateFeed =
 (EMultiSubscribeFeed.build()).target(this)
 .messageClass(MonitorUpdate.class)
 .scope(FeedScope.LOCAL_AND_REMOTE)
 .query(multiUpdateSubject)

Page of 189 212

eBus Programmer’s Manual

 .statusCallback(this::onUpdateFeedStatus)
 .notifyCallback(this::onMonitorUpdate)
 .build();
}

private void onAppInfoFeedStatus(final EFeedState state, final IESubscribeFeed feed) {
 …
}

private void onAppInfoUpdate(final ApplicationInfo info, final IESubscribeFeed feed) {
 …
}

private void onUpdateFeedStatus(final EFeedState state, final IESubscribeFeed feed) {
 …
}

private void onMonitorUpdate(final MonitorUpdate info, final IESubscribeFeed feed) {
 …
}

It is recommended that subscriptions be put into place before requesting latest monitor updates which is
the next step.

The third step is requesting the latest Monitor updates. Unlike monitor notification subject, the monitor
request subject are fixed: Monitor.APP_INFO_REQUEST_SUBJECT and
Monitor.ONGOING_REQUEST_SUBJECT. It is recommended that these request subjects be put into
place on start-up but the requests themselves not be made until the repliers are known to be up. The
following code demonstrates how to do this:

import static net.sf.eBus.client.eFeed.FeedScope;
import net.sf.eBus.client.ERequestFeed;
import net.sf.eBus.client.IERequestFeed;
import net.sf.eBus.messages.EMessageKey;
import net.sf.eBusx.monitor.ApplicationInfoRequest;
import net.sf.eBusx.monitor.Monitor;
import net.sf.eBusx.monitor.MonitorObjectRequest;

private ERequestFeed mAppInfoRequestFeed;
private ERequestFeed.ERequest mAppInfoRequest;
private ERequestFeed mMonitorRequestFeed;
private ERequestFeed.ERequest mMonitorRequest;

@Override public void startup() {
 final EMessageKey appInfoRequestKey =
 new EMessageKey(
 ApplicationInfoRequest.class, Monitor.APP_INFO_REQUEST_SUBJECT);
 final EMessageKey ogRequestKey =
 new EMessageKey(
 MonitoredObjectRequest.class, Monitor.ONGOING_REQUEST_SUBJECT);

 mAppInfoRquestFeed =
 (ERequestFeed.builder()).target(this)
 .messageKey(appInfoRequestKey)
 .scope(FeedScope.LOCAL_AND_REMOTE)
 .statusCallback(this::onAppInfoRequestFeedStatus)
 .replyCallback(this::onAppInfoReply)
 .build();
 mAppInfoRequestFeed.subscribe();

 mMonitorRequestFeed =
 (ERequestFeed.builder()).target(this)
 .messageKey(ogRequestKey)
 .scope(FeedScope.LOCAL_AND_REMOTE)

Page of 190 212

Keeping an Eye on Things

 .statusCallback(this::onMonitorFeedStatus)
 .replyCallback(this::onMonitorStatusReply)
 .build();
 mMonitorRequestFeed.subscribe();
}

private void onAppInfoRequestFeedStatus(final EFeedState state,
 final IERequestFeed feed) {
 if (state == EFeedState.UP) {
 final ApplicationInfoRequest.Builder builder =
 ApplicationInfoRequest.builder();

 mAppInfoRequest =
 mAppInfoRequestFeed.request(
 builder.subject(Monitor.APP_INFO_REQUEST_SUBJECT).build());
 }
}

private void onAppInfoReply(final int remaining,
 final EReplyMessage msg,
 final ERequestFeed.Request request) {
 // Process application information reply.
}

private void onMonitorFeedStatus(final EFeedState state,
 final IERequestFeed feed) {
 if (state == EFeedState.UP) {
 final MonitoredObjectRequest.Builder builder =
 MonitoredObjectRequest.builder();

 mMonitorRequest =
 mMonitorRequestFeed.request(
 builder.subject(Monitor.ON_GOING_REQUEST_SUBJECT).build());
 }
}

private void onMonitorStatusReply(final int remaining,
 final EReplyMessage msg,
 final ERequestFeed.Request feed) {
 // Process monitored object status reply.
}

Page of 191 212

eBus Programmer’s Manual

Page of 192 212

Appendix A: Binary message layout

Appendices
Appendix A: Binary message layout
eBus external connections use binary serialization. Serialized eBus messages consist of a header and
body. The body consists of the class public final fields. The header consists of the following:

Only non-null fields are serialized. If a field is null, then its bit is set to zero in the message field mask. A
non-null field has is message field mask bit set to one and then the field is serialized to the buffer.

The first 4 fields of 14 bytes is the message header. The last two fields are the serialized message body. 

Start
Byte

End
Byte

Length Description

0 3 4 Total message length (includes these four bytes)
or
HEARTBEAT (0xC568)
or
HEARTBEAT_REPLY (0xE0C0)
Note: Maximum message length is 32,767 bytes
(including 16 byte header leaving 32,751 bytes for
message).

4 7 4 Message key identifier.
Uniquely identifies a message class, subject pair and is
assigned by the remote application.

8 11 4 From feed identifier.

Message is from this local message feed. Responses to
this message are sent to this feed.

12 15 4 To feed identifier.

This message is delivered to this remote message feed.
Set to -1 if the local feed is not yet linked to a remote
feed.

16 19 4 Message sequence number.

Added only for reliable UDP protocol.

16 19 4 Message field mask (4-byte, signed integer).

This is why messages are limited to 31 fields - one bit
per field. If bit is not set, then field does not appear in
the payload.

20 (length - 1) (length - 20) Serialized eBus message (EMessage). See below.

Page of 193 212

eBus Programmer’s Manual

The following table describes how eBus serializes supported field types.

Type Length Description
java.math.BigDecimal 12 Pos Sz Description

 0 8 BigDecimal.unscaledValue()
 8 4 BigDecimal.scale()

De-serialized using BigDecimal.valueOf(long,
int).

java.math.BigInteger 2 + byte array
length

Pos Sz Description
 0 2 byte[] length
 2 n byte[] value

boolean/Boolean 1 bit Booleans are stored as a single bit within a 64-bit,
signed integer. This long value is only serialized if
the message/field class has at least one boolean field.

byte/Byte 1 Pos Sz Description
 0 1 byte or Byte.byteValue()

char/Character 2 Pos Sz Description
 0 2 char or Character.charValue()

Class 2 + class name
length

Performs String serialization on
Class.getName().
De-serialized using Class.forName(String).

Date 8 Pos Sz Description
 0 8 Date.getTime()

De-serialized using new Date(long).

double/Double 8 Pos Sz Description
 0 8 double or
 Double.doubleValue()

enum 2 Pos Sz Description
 0 2 enum.ordinal()

De-serialized using
enumclass.getEnumConstants()[ord].

EField n Pos Sz Description
 0 4 field mask, signed int.
 4 n message fields

The 31 bit field mask is why EField classes are
limited to 31 fields.

java.io.File 2 + file name
length

Performs String serialization on File.getPath().
Path length limited to 1,024 characters.

De-serialized using new File(String).

float/Float 4 Pos Sz Description
 0 4 float or Float.floatValue().

Page of 194 212

Appendix A: Binary message layout

InetAddress 4 (IPv4)
8 (IPv6)

Pos Sz Description
 0 2 address size (4 or 8 bytes)
 2 4 InetAddress.getBytes() (v4)
 2 8 InetAddress.getBytes() (v6)

De-serialized using
InetAddress.getByAddress(byte[]).

InetSocketAddress 8 (IPv4)

12 (IPv6)

Pos Sz Description
 0 6 IPv4 address
 6 4 TCP port OR
 0 10 IPv6 address
 10 4 TCP port

De-serialized using
new InetSocketAddress(addr, port).

int/Integer 4 Pos Sz Description
 0 4 int or Integer.intValue()

long/Long 8 Pos Sz Description
 0 8 long or Long.longValue()

EMessageKey n Pos Sz Description
 0 n Class serialize message class
 8 m String serialize subject

De-serialized using
new EMessageKey(Class, String).

short/Short 2 Pos Sz Description
 0 2 short or Short.shortValue()

java.lang.String 2 + string length Pos Sz Description
 0 2 String.length()
 2 n String.getBytes(UTF8 charset)

Note: strings limited to 1,024 characters.
De-serialized using
new String(byte[], CharSet).

java.net.URI 2 + URI string
length

Performs String serialization on URI.toString().

De-serialized using new URI(String).

java.util.UUID 16 Pos Sz Description
 0 7 UUID most-significant bits.
 8 15 UUID least-significant bits.
De-serialized using
new UUID(long, long)

java.time.Duration 8 Serialized using Duration.toNanos().
De-serialized using Duration.ofNanos().

java.time.Instant 16 Serialized using Instant.getEpochSecond(),
 Instant.getNano() (as long)
De-serialized using
Instant.ofEpochSecond(long, long).

Type Length Description

Page of 195 212

eBus Programmer’s Manual

java.time.LocalDate 8 Serialized using LocalDate.toEpochDay().
De-serialized using LocalDate.ofEpochDay().

java.time.LocalTime 8 Serialized using LocalTime.toNanoOfDay().
De-serialized using LocalTime.ofNanoOfDay().

java.time.LocalDateTime 16 Serialized using
LocalDateTime.toLocalDate(),
LocalDateTime.toLocalTime().
De-serialized using
LocalDateTime.of(LocalDate, LocalTime).

java.time.MonthDay 8 Serialized using MonthDay.getMonthValue(),
MonthDay.getDayOfMonth().
De-serialized using MonthDay.of(int, int).

java.time.OffsetTime 12 Serialized using
OffsetTime.toLocalTime(),
OffsetTime.getOffset().
De-serialized using
OffsetTime.of(LocalTime, ZoneOffset)

java.time.OffsetDateTime 20 Serialized using
OffsetDateTime.toLocalDate(),
OffsetDateTime.toLocalTime(),
OffsetDateTime.getOffset().
De-serialized using
OffsetDateTime.of(LocalDate, LocalTime,
ZoneOffset).

java.time.Period 12 Serialized using Period.getYears(),
Period.getMonths(), Period.getDays().
De-serialized using
Period.of(int, int, int).

java.time.YearMonth 8 Serialized using YearMonth.getYear(),
YearMonth.getMonthValue().
De-serialized using YearMonth.of(int, int).

java.time.Year 4 Serialized using Year.getValue().
De-serialized using Year.of(int).

java.time.ZoneOffset 8 Serialized using
ZoneOffset.getTotalSeconds().
De-serialized using
ZoneOffset.ofTotalSeconds(int).

org.decimal4j.api.Decimal 12 Pos Sz Description
 0 8 Decimal.unscaledValue()
 8 4 Decimal.getScale()

De-serialized using
DecimalFactory.valueOfUnscaled(long,
int).

Type Length Description

Page of 196 212

Appendix A: Binary message layout

java.time.ZoneId zone ID string
length

Serialized using ZoneId.getId().
De-serialized using ZoneId.of(String).

java.time.ZonedDateTime 8 + zone ID
string length

Serialized using
ZonedDateTime.toLocalDate(),
ZonedDateTime.toLocalTime(),
ZonedDateTime.getZone().
De-serialized using
ZonedDateTime.of(LocalDate, LocalTime,
ZoneId.

type[] array n Pos Sz Description
0 2 array.length
2 n type serialize each element.

De-serialized using
Array.newInstance(Class, int) and then
using type to de-serialize each element.

Type Length Description

Page of 197 212

eBus Programmer’s Manual

Page of 198 212

Appendix B: eBus connection protocol

Appendix B: eBus connection protocol
net.sf.eBus.client.ERemoteApp provides the interface between remote eBus applications.
ERemoteApp represents remote publishers and repliers to the local JVM and local subscribers and
requestors to the remote JVM. This section describes how ERemoteApp handles messages from the
remote JVM and EPublisher, ESubscriber, ERequestor, and EReplier callbacks in the local JVM.
First, a brief description of how eBus applications shake hands when connecting.

1. eBus client successfully connects to a remote eBus service.
2. eBus client sends a net.sf.eBus.client.sysmessages.LogonMessage to remote eBus.

This system message contains the JVM identifier returned by
(ManagementFactory.getRuntimeMXBean()).getName().

3. eBus client waits for a net.sf.eBus.client.sysmessages.LogonReply. This message
contains status and reason fields. If status is ReplyStatus.OK, then both sides of the
connection go to step 4. If status is ReplyStatus.ERROR, then the remote eBus rejected the
connection due to this being a redundant connection from the local JVM. The connection is then
closed.

4. Both sides exchange net.sf.eBus.client.sysmessages.AdMessage for all active
publisher and replier advertisements. This message contains four fields: message class,
message subject, ad status, and ad type. The message class is sent as a String and not a
Class field because the local JVM cannot be certain that remote JVM supports the named class.
If Class was used, then the message de-serialization could fail when Class.forName() is
called, resulting in a message discard. Sending the class name as a String avoids this problem.
If the message class is not supported on the remote JVM, then the advertisement is ignored. The
ad status field is set to either AdStatus.ADD or AdStatus.REMOVE. In this case the status is
ADD. The ad type is a net.sf.eBus.messages.EMessage.MessageType and is either
NOTIFICATION or REPLY.

5. When ERemoteApp advertisement transmission is complete, then a
net.sf.eBus.client.sysmessages.LogonComplete is sent.

The following table describes how ERemoteApp responds to system messages:

LogonMessage
Fields:
public final String eid

Unique eBus identifier. Set to
java.lang.management.ManagementFactory.getRuntimeMXBean().getName() which
returns a unique JVM identifier.

Description:
An eBus application sends this as the first message after successfully connecting.

Response:
net.sf.eBus.client.sysmessages.LogonResponse

LogonResponse
Fields:
public final String eid

Unique eBus identifier. See LogonMessage.
public final ReplyStatus logonStatus

If logon request is accepted, set to ReplyStatus.OK_FINAL. If logon request is rejected, then set
to ReplyStatus.ERROR.

Page of 199 212

eBus Programmer’s Manual

public final String reason
If logon request is rejected, then text explaining why it was rejected is stored here.

Description:
Sent in response to a LogonMessage, informing the remote eBus application whether the request
was accepted or rejected. If rejected, the connection will be closed. If accepted, advertisements and
message key identifiers will be exchanged. A LogonCompleteMesage is sent to inform the other
side that advertisement and message key transmission is complete.

Response:
net.sf.eBus.client.sysmessages.KeyMessage
net.sf.eBus.client.sysmessages.AdMessage
net.sf.eBus.client.sysmessage.LogonCompleteMessage

KeyMessage
Fields:
public final int keyId

Unique identifier assigned to message key. This is the value placed into the message header when
transmitted.

public final String keyClass
Key’s message class name. Sent as a String because this class may not be known to the receiving
eBus application. If that is the case, then the receiving eBus application ignores this message.

public final String keySubject
Key’s subject.

Description:
Provides the mapping between a 4-byte, signed integer and a message key. This integer identifier is
used in a message header to identify the inbound message key which is used to de-serialize the
message. This means that the message class name and subject do not need to be encoded as
strings.

Response:
No response.

AdMessage
Fields:
public final String messageClass

Key’s message class name.
public final String messageSubject

Key’s subject.
public final AdStatus adStatus

Set to AdMessage.AdStatus.ADD when installing a new advertisement and
AdMessage.AdStatus.REMOVE when retracting an existing advertisement.

public final MessageType adMessageType
Either EMessage.MessageType.NOTIFICATION for a publisher advertisement and
EMessage.MessageType.REQUEST for a replier advertisement.

Description:
During the login process, used to announce publisher and replier advertisements with local & remote
or remote scope to a remote application so it can be installed. If the remote application does not
support messageClass, then the advertisement is ignored.
If adStatus is AdStatus.ADD, then opens either an IEPublishFeed or IEReplyFeed depending
on whether the advertised message class is an ENotificationMessage or ERequestMessage.

Page of 200 212

Appendix B: eBus connection protocol

If adStatus is AdStatus.REMOVE, then retracts the feed advertisement.

Response:
No response.

LogonCompleteMessage
Fields:
public final String eid

Unique eBus identifier. Set to
java.lang.management.ManagementFactory.getRuntimeMXBean().getName() which
returns a unique JVM identifier.

Description:
Denotes that the KeyMessage and AdMessage stream is completed. eBus subscriptions,
notifications, requests, and replies may now be exchanged. Received advertisements are now
processed (see below).

Response:
No response. Putting an advertisement in place may result in subscribe messages sent in return.

The following messages are sent after a successful login.
SubscribeMessage
Fields:
public final String messageClass

Key’s message class name.
public final String messageSubject

Key’s subject.
public final EFeedState feedState

Set to EFeedState.UP when subscribing and EFeedState.DOWN when retracting an existing
subscription.

Description:
Used to subscribe or unsubscribe to the specified notification message key. If feedState is
EFeedState.UP, then opens an IESubscribeFeed; otherwise unsubscribes the feed.

Response:
No response.

FeedStatusMessage
Fields:
public final EFeedState feedState

Set to EFeedState.UP or EFeedState.DOWN.

Description:
Used to inform local subscribers whether a remote notification feed is either up or down. This
message does not contain message key fields because that is implied by the To Feed header field.

Response:
No response.

RemoteAck
Fields:
public final int remaining

The number of repliers for the given request.

Page of 201 212

eBus Programmer’s Manual

Description:
When eBus receives a remote request and there are repliers to the request, then this message is
sent before any replies to inform the remote eBus application about the number of repliers from this
JVM.

Response:
No response.

CancelRequest
Fields:

No fields.
Description:

Cancels a remote request by canceling the referenced ERequestFeed.ERequest.

Response:
No response.

The following describes how application messages are handled, both inbound and outbound.

Page of 202 212

Appendix C: eBus protocol stack

Appendix C: eBus protocol stack
This table describes the eBus binary protocol, its levels, and how configuration impacts this stack. eBus
uses Java NIO to perform the socket I/O.

ERemoteApp

Description: Responsible for maintaining a connection to a remote eBus application.
eBus.connection.name.host: the remote application service is open on this host.
eBus.connection.name.port: the remote application service is open on this port.
eBus.connection.name.bindPort: bind the connection’s local side to this port.

Input: Forwards messages to target EFeed instance, except system messages. See Appendix B for
further information on how inbound system messages are handled.

Output: Passes outbound system and user messages to the associated ETCPConnection instance.
If the ETCPConnection output message queue overflows, then the connection is closed and
all queued messages are discarded. If the connection is set to reconnect, then the reconnect
timer is set. (Note: system messages are not used to calculate queue depth.)
eBus.connection.name.reconnect: if true, then a lost connection is re-established.
The default value is false.
eBus.connection.name.reconnectTime: specifies the millisecond rate at which
reconnect attempts are made. The default value is 5 seconds. The setting is ignored if
reconnect is set to false.

ETCPConnection

Description:Responsible for serializing outbound messages and deserializing inbound messages. Also
responsible for queuing up outbound messages when the socket TCP window narrows.
Sends the enqueued messages when the buffer overflow condition clears. Again, system
messages are not counted against the outbound message queue length.

Input: De-serializes eBus messages directly from the AsyncSocket input buffer. Posts de-
serialized messages to ERemoteApp.
The connection does not its own input buffer but uses the AsyncSocket input buffer which is
configurable.
eBus.connection.name.heartbeatReplyDelay: if > zero, then wait this many
milliseconds for a reply to a heartbeat. This timer is reset every time data is received from the
far-end. This setting is ignored if heartbeatDelay is not set.

Output: Serializes outbound message directly to the socket output buffer using the BufferWriter
interface which throws a BufferOverflowException if the socket output buffer overflows.
This exception is caught by ETCPConnection and the message is posted to the message
queue. When the socket output buffer is no longer full, forwards the queued messages until
the queue is either empty or the socket output buffer is again full.
The connection does not have its own output buffer but uses the AsyncSocket output buffer
which is configurable.
eBus.connection.name.messageQueueSize: if set and this size is exceeded, then the
connection is immediately closed and the upstream ERemoteApp notified.

Page of 203 212

eBus Programmer’s Manual

eBus.connection.name.heartbeatDelay: If > zero, then send a heartbeat to remote
end after this many milliseconds of inactivity. That is, this timer is reset every time data is
received from the far-end.

AsyncSocket

Description: Interface between ETCPConnection and the SelectorThread. Encapsulates the
SelectableChannel, and input, output ByteBuffers. Both are direct allocations.

Input: Passes input ByteBuffer directly to ETCPConnection.

eBus.connection.name.inputBufferSize: specifies the socket input buffer fixed size.
Defaults to 2,048 bytes.

Output: Outbound messages are serialized to a socket output buffer via a BufferWriter instance.
If the output buffer size is exceeded, then throws a BufferOverflowException.
eBus.connection.name.outputBufferSize: specifies the socket output buffer fixed
size. Defaults to 2,048 bytes.

SelectorThread

Description:Watches SelectableChannel instances and performs the actual read, write and accept
operations. Can be configured to block or spin when selecting.
eBus.connection.name.selector: specifies the selector thread used to monitor the
socket channel.

Input: Reads bytes from a SocketChannel into the AsyncSocket input buffer.

Output: Passes the AsyncSocket output buffer to SocketChannel.write(ByteBuffer). 

Page of 204 212

Appendix D: eBus Network Programming

Appendix D: eBus Network Programming
The net.sf.eBus.net package adds an asynchronous layer between java.nio and an application.
Understanding eBus async network programming requires first understanding Java NIO. Java NIO is
centered on three classes: SelectableChannel, SelectionKey, and Selector.

Three SelectableChannel subclasses: SocketChannel, ServerSocketChannel, and
DatagramChannel are used to read and write bytes or accept new connections. But when is a channel
ready to perform an I/O operation?

That is where Selector comes in. Selector watches one or more registered SelectableChannels
and determines which operations are ready to be performed on which channel. But how is a channel
registered with Selector?

 SelectionKey is used to connect a channel with a selector. A SelectionKey instance is created
when the selectable channel is registered (via SelectableChannel.register(selector,
opsMask) method) with the Selector for the given initial operations bit mask. Once registered the
operations bit mask may be modified directly using SelectionKey.interestOps(int).

 Java NIO allows a single selector to watch multiple channels for ready I/O operations. The application
calls Selector.select() which returns the number of I/O ready channels. Then
Selector.selectedKeys() which returns the I/O ready SelectionKey set. For each I/O ready key
SelectionKey.readyOps() is called to retrieve the ready I/O operations mask. And that mask tells
the application which I/O operation to perform on the channel.

 eBus async network API wraps these Java NIO components into its own three classes and so simplifying
the interface :

1. AsyncChannel: encapsulates a SelectableChannel.
2. SelectorThread: encapsulates a Selector.
3. Listener interface: application class implements the appropriate interface in order to receive

callbacks from the AsyncChannel. There is a different interface for TCP socket, TCP server
socket, and UDP socket.

eBus async API implements the Java NIO API as follows:

1. SelectorThread watches registered socket channels for ready I/O operations.
2. When SelectorThread detects ready I/O operations, it calls each SelectionKey's affiliated

AsyncChannel. An AsyncChannel affiliation with a SelectionKey is accomplished using
SelectionKey.attach(Object).

3. AsyncChannel.processOps(int readyOps, SelectionKey key) performs the I/O
operations specified by readyOps bit mask, calling back to the application listener appropriately.

The goal is that once an application creates an async socket and opens a connection, the application
does nothing else but send data and respond to the async socket callbacks.

Please note the callback sequence: SelectorThread ⇒ AsyncChannel ⇒ Application Listener. The
application listener is called back on the selector thread. This means that while in the application
listener, the selector thread is not watching for I/O events. So it is important for the application listener to
handle the callback as quickly as possible. That said, there is a way to lessen the impact of a slow listener
on priority socket channels.

Page of 205 212

http://net.sf.eBus.net

eBus Programmer’s Manual

Defining Selectors
Application developers may define one or more selectors to monitor channels in different ways. A selector
is a thread encapsulating a java.nio.channels.Selector instance calling Selector.select() or
variants of that method depending on the configured thread type. The thread types are:

ThreadType.BLOCKING: selector thread calls Selector.select() and waits indefinitely or until
there is a pending change to the key set. This type is most CPU friendly but also the slowest since
the thread will be moved off core due to being blocked. 
 
The default eBus selector is blocking (but may be overridden by the application).
ThreadType.SPINNING: select thread calls Selector.selectNow() repeatedly. This type is
least CPU friendly since it will effectively take over a core but also the fastest to detect incoming
bytes. 
 
Because a spinning thread dominates a core, it is recommended the selector thread be "pinned" to a
specific core and that core isolated from the operating system. OpenHFT Thread Affinity API may be
used to accomplish this.
ThreadType.SPINYIELD: select thread calls Selector.selectNow() for a configured number of
times. When that limit is reached the thread is parked using
java.util.concurrent.locks.LockSupport.park(). When park() returns, selector thread
begins spinning on selectNow() again for the configured limit. 
 
Like spinning, this type should have affinity for an isolated core.
ThreadType.SPINPARK: like spin-yield, this type calls Selector.selectNow() for a configured
number of times but parks for a configured nanosecond duration. When park(long) returns,
selector thread begins spinning on selectNow() again. 
 
This type should have affinity for an isolated core.

The only way to define selectors is at start up using -Dnet.sf.eBus.config.jsonFile=<file>. An
example selector configuration is:

"selectors" : [
 {
 "name" : "faster" // required, must be unique.
 "type" : "spinning" // required.
 "isDefault" : "false" // optional, defaults to false.
 "priority" : 10 // optional, defaults to Thread.NORM_PRIORITY
 threadAffinity { // optional, selector thread core affinity
 affinityType : CPU_ID // required, core selection type.
 cpuId : 7 // required for CPU_ID affinity type
 bind : true // optional, defaults to false
 wholeCore : true // optional, defaults to false
 }
 },
 {
 "name" : "slower"
 "type" : "spin+park"
 "isDefault" : "true"
 "priority" : 7
 "spinLimit" : 1000000
 "parkTime" : 500
 }
]

Page of 206 212

https://github.com/OpenHFT/Java-Thread-Affinity

Appendix D: eBus Network Programming

The default eBus selector is not created in this example since the configuration makes the "slower"
spin+park selector the default.

The configured selectors may be retrieved either by name (AsyncChannel.selector(String)) or
retrieving all known selectors (AsyncChannel.selectors()).

Please note that selector threads are not immediately started when configured. Rather selector threads
are started when first referenced by an AsyncChannel. If no channel uses a particular selector thread,
then that thread is not started.

Dynamic Selector Definition

eBus release 5.7.0 introduced the static method
AsyncChannel.createSelector(ENetConfigure.SelectorInfo info) which creates a new
selector thread based on the given selector configuration. This selector configuration is created using
ENetConfigure.SelectorInfoBuilder. In turn a builder instance is obtained by calling
ENetConfigure.selectorBuilder().

Note that info.isDefault() must return false. This is because default selectors may only be defined
during JVM initialization in the defined network configuration file.

Different Selectors for Different Channels

As pointed out above, application listeners are called out on the async channel's affiliated selector thread.
This means that a slow listener can hold up other async channel I/O processing. But this problem can be
lessened by segregating channels with slower listeners from priority channels with faster listeners by
affiliating each type with a different SelectorThread.

The fast, high priority async channels use a spinning, core pinned selector thread; slow, low priority
channels use a blocking, unpinned selector thread. This way the differing channels don't interfere with
each other.

Selector Thread Affinity

eBus release 5.8.0 introduced thread affinity for selector threads. This affinity is created when adding
threadAffinity property to the selector configuration. This works for both static configuration in the
JSON file or dynamic Selector definition.

Thread affinity is recommended especially for selector threads configured as spinning since a thread
doing hard spinning is not amenable to pre-emption. Also be sure to isolate the selected core from
operating system use. Otherwise the spinning thread may still be pre-empted by the OS for its own
particular use.

Please note: threadAffinity property is only supported in JSON configuration files and not in Java
properties files.

See Appendix E: Configuring Thread Affinity for a detailed discussion on using thread affinity.

Page of 207 212

eBus Programmer’s Manual

AsyncChannel Types
eBus networking API supports the following channels. The table matches the eBus async channel with its
encapsulated Java NIO channel.

See the eBus Javadoc API pages for complete information on how to use each eBus async channel type.

eBus Async Channel Java NIO Channel

AsyncSocket SocketChannel

AsyncServerSocket ServerSocketChannel

AsyncSecureSocket SocketChannel
SSLContext

AsyncDatagramSocket DatagramChannel

AsyncSecureDatagramSocket DatagramChannel

AsyncMulticastSocket DatagramChannel

Page of 208 212

https://ebus.sourceforge.io/eBus/index.html
https://ebus.sourceforge.io/eBus/net/sf/eBus/net/AsyncSocket.html
https://ebus.sourceforge.io/eBus/net/sf/eBus/net/AsyncServerSocket.html
https://ebus.sourceforge.io/eBus/net/sf/eBus/net/AsyncSecureSocket.html
https://ebus.sourceforge.io/eBus/net/sf/eBus/net/AsyncDatagramSocket.html
https://ebus.sourceforge.io/eBus/net/sf/eBus/net/AsyncSecureDatagramSocket.html
https://ebus.sourceforge.io/eBus/net/sf/eBus/net/AsyncMulticastSocket.html

Appendix E:Configuring Thread Affinity

Appendix E: Configuring Thread Affinity
eBus release 5.8.0 introduced the ability to create thread affinity for dispatcher and selector threads. This
feature is based on the OpenHFT Java Thread Affinity project. Class
net.sf.eBus.config.ThreadAffinityConfigure defines thread affinity and is used by
net.sf.eBusx.util.ThreadAffinity, directing its interaction with OpenHFT Java thread affinity.

ThreadAffinityConfigure consist of the following properties:

affinityType: Required. Defines how core is acquired for the thread. There are five acquisition
types as defined by enum net.sf.eBus.config.ThreadAffinityConfigure.AffinityType:

1. ANY_CORE: Use net.openhft.affinity.AffinityLock.acquireCore() to assign any
free core to thread.

2. ANY_CPU: Use AffinityLock.acquireLock() to assign any free CPU to thread.

3. CPU_LAST_MINUS: Use AffinityLock.acquireLockLastMinus(int n) to allocate a CPU
from the end of the core set based on the given positive number. Requires property
lastMinusOffset be set.

4. CPU_ID: Use AffinityLock.acquireLock(int cpuID) to allocate a CPU with specified
identifier to thread. Requires property cpuId be set.

5. CPU_STRATEGIES: Use AffinityLock.acquireLock(AffinityStrategies…) to assign
a CPU to thread. Requires property cpuStrategies be set.

Please note that this type may not be used by itself or as an initial CPU acquisition type. Rather
there must be previous CPU allocation to this (for example a previous dispatcher configuration
using thread affinity) which the strategy then uses to allocate the next CPU. Attempts to use this
acquisition type either by itself or as the first strategy will result in an error and no CPU allocated
for the thread.

bind: Optional, default value is false. If true, then bind current thread to allocated
AffinityLock.

wholeCore: Option, default value is false. If true, then bind current thread to allocated
AffinityLock reserving the whole core. This property is used only with bind property is true.

cpuId: Required when affinityType set to CPU_ID. Specifies the allocated CPU by its identifier.

cpuStrategies: Required when affinityType set to CPU_STRATEGIES. Values are restricted to
enum net.openhft.affinity.AffinityStrategies.

Note: strategy ordering is important. AffinityStrategies.ANY must appear as the last listed
strategy. This allows any CPU to be selected in case none of the other strategies found an acceptable
CPU.

Users should be familiar with the OpenHFT Java Thread Affinity library and how it works before using
eBus thread affinity configuration. This includes configuring the operating system to isolate acquired
CPUs from the operating system. This prevents the OS from pre-empting the thread from its assigned
CPU which means the thread does not entirely own the CPU. That said, isolating too many CPUs from
the OS can lead to a kernel panic. So using thread affinity is definitely an advanced software technique,
requiring good understanding of how an OS functions.

Page of 209 212

https://github.com/OpenHFT/Java-Thread-Affinity

eBus Programmer’s Manual

The following example shows how to use thread affinity for eBus dispatcher threads and especially the
CPU_STRATEGIES acquisition type.

"dispatchers" : [
 {
 "name" : "mdDispatcher"
 "numberThreads" : 1
 "runQueueType" : "spinning"
 "priority" : 9
 "quantum" : 10000
 "isDefault" : false
 "classes" : ["com.acme.trading.MDHandler"]
 threadAffinity { // optional, selector thread core affinity
 affinityType : CPU_ID // required, core selection type.
 cpuId : 7 // required for CPU_ID affinity type
 bind : true // optional, defaults to false
 wholeCore : true // optional, defaults to false
 },
 {
 "name" : "orderDispatcher"
 "numberThreads" : 1
 "runQueueType" : "spinning"
 "priority" : 9
 "quantum" : 10000
 "isDefault" : false
 "classes" : ["com.acme.trading.OrderHandler"]
 threadAffinity { // optional, selector thread core affinity
 affinityType : CPU_STRATEGIES // required, core selection type.
 cpuStrategies : [// required for CPU_STRATEGIES affinity type
 SAME_CORE, SAME_SOCKET, ANY // Note: ANY must be last strategy.
]
 bind : true // optional, defaults to false
 wholeCore : true // optional, defaults to false
 },
 {
 "name" : "defaultDispatcher"
 "numberThreads" : 8
 "runQueueType" : "blocking"
 "priority" : 4
 "quantum" : 100000
 "isDefault" : true
 }
]

Page of 210 212

Glossary

Glossary
Index

Condition
Dispatcher
EClient
Feed Scope
Message Key
Notification
Reply
Request

Definition
Condition
eBus supports optional net.sf.eBus.client.ECondition to be associated with notification
subscriptions and reply advertisements. Conditions restrict message delivery to those messages which
satisfy the condition. For subscribers, this check is done just prior to actual message delivery. This means
that potentially more messages are posted to the subscriber than are actually delivered.

For repliers, this check is done prior to posting the request message. This is necessary because eBus
must determine if any repliers accept a request in order to return the correct request state to the
requestor.

Dispatcher
Dispatcher asynchronously delivers messages to eBus clients. A Dispatcher consists of a client run queue
and one or more threads. An application may configure multiple Dispatchers, each handling different
client classes.

EClient
eBus creates one EClient instance for each application client, regardless of the number of interfaces
the client implements or open feeds. The client maintains a weak reference to the application client, the
undelivered message queue, and the client's open feeds. EClient connects the application client with
the Dispatcher.

Feed Scope
An application defines a feed's scope when opening the feed. This scope defines the feed's visibility. That
feed may be visible only within the local JVM, within both local and remote JVMs, and in remote JVMs
only. For example, if a subscription feed has local-only scope, then it will receive notifications from local
publisher feeds only. Notifications from remote publishers will not be forwarded to the local-only
subscriber. The following table shows the interface between feed scopes:

Feed Scope

Page of 211 212

eBus Programmer’s Manual

(Notice that a remote feed may only support a local & remote feed and not other remote only feeds.)

Feed scope gives the application developer control over how "far" a will go. If a notification message is
intended to stay within a JVM, both the publish and subscribe feeds may be set to a local only scope. If a
notification is meant for remote access only, the the publish feed is set to remote only scope. These
examples also apply to request/reply feeds.

Message Key
eBus message feeds are uniquely identified by a "type+topic" message key. The "type" refers to a
concrete message class. The "topic" is the unique message subject. Using "type+topic" allows a message
subject to be used for multiple message classes.

Example: there is a message class named CatalogUpdate and a message subject "FishingGear".
Combining the two results in the message key CatalogUpdate:"FishingGear". The message class
may be combined with another subject to form another key CatalogUpdate:"CampingGear". Likewise,
the subject may be combined with another message to form the key SalesSpecial:"FishingGear".

If you are familiar with subject-based addressing for message routing, then you know that these systems
require subjects to be formatted according to a particular scheme. eBus has no subject-formatting
requirements. You are free to format your message subjects any way you like.

Notification
An eBus message derived from net.sf.eBus.messages.ENotificationMessage. A notification
message is posted by a net.sf.eBus.client.EPublisher instance and forwarded to all
net.sf.eBus.client.ESubscriber instances currently subscribed to that notification message key.

Reply
An eBus message derived from net.sf.eBus.messages.EReplyMessage. A reply message is
posted by a net.sf.eBus.client.EReplier instance in response to a request message and is sent
directly to the net.sf.eBus.client.ERequestor which sent the request message.

Request
An eBus message derived from net.sf.eBus.messages.ERequestMessage. A request message is
posted by a net.sf.eBus.client.ERequestor instance and forwarded to all
net.sf.eBus.client.EReplier instances currently advertised for that request message key.

Local Only Local & Remote Remote Only

Local Only Match Match No match

Local & Remote Match Match Match

Remote Only No match Match No match

Page of 212 212

	eBus Programmer’s Manual
	Welcome to eBus!
	Overview

	Merrily, We Role Along
	Publisher
	Step 1: Implementing a publisher
	Step 2: Opening and advertising a publisher feed
	Step 3: When to start publishing
	Step 4: Publishing
	Step 5: When to stop publishing
	Step 6: Unadvertising the publisher
	Step 7: Complete publisher code

	Subscriber
	Step 1: Implementing a subscriber
	Step 2: Subscribing to a notification message and subject
	Step 3: Handling a publisher feed status
	Step 4: Handling notifications
	Step 5: Unsubscribing
	Step 6: Complete subscriber code

	Replier
	Step 1: Implementing a replier
	Step 2: Advertising a replier
	Step 3: Handling a request
	Step 4: Canceling a request
	Step 5: Replying to a request
	Step 6: Unadvertising a replier
	Step 7: Complete replier code

	Requestor
	Step 1: Implementing a requestor
	Step 2: Opening a request
	Step 3: Handling a replier’s feed status
	Step 4: Making a request
	Step 5: Receiving replies
	Step 6: Canceling a request
	Step 7: Complete requestor code

	Using Lambda Expression Callbacks
	ERequestor Callbacks

	Hybrid Object Pattern

	Get the Message
	Defining an eBus Message
	Step 0: eBus supported message field types
	Step 1: Message Class
	Step 2: Message Annotation
	Step 3: Static Message builder() method
	Step 4: Builder Inner Class
	Step 4a: Builder Inner Class Constructor
	Step 4b: Builder Inner Class Setter Methods
	Step 4c: Builder Inner Class Method Overrides
	Step 5: Message Object Constructor
	Step 6: Message field type definition
	Step 7: Complete Message Class

	Defining an Extendable Field
	Arrays and List Fields
	Local eBus Messages
	Message Field Annotations
	String: @EStringInfo(charset = "charset name", lineCount = n, maximumAllowedSize = n)
	Array, EFieldList, EMessageList, BigInteger:
	@EArrayInfo(maximumAllowedSize = n)
	All: @FieldDisplayIndex(index = n)

	Compiling Messages

	Key to eBus
	Feed me, Seymour!
	Multi-Subject Feeds
	Pattern Feed
	Ordered Pattern
	Unordered Pattern
	Defining Parameter Maps
	Subscribing to an Event Pattern Feed

	Feed Interfaces

	Don't Know Much About History
	IEHistoricPublisher
	Step 1: Implementing an historic publisher
	Step 2: Implementing a message store
	Step 3: Opening, starting, and advertising an historic publish feed
	Step 4: Publishing
	Step 5: Unadvertising the publisher
	Step 6: Complete historic publisher code

	IEHistoricSubscriber
	Step 1: Implementing an historic subscriber
	Step 2: Opening, starting and subscribing historic feed
	Step 3: Handling publisher feed status
	Step 4: Handling notifications
	Step 5: Handling historic feed completion
	Step 6: Retracting historic feed.
	Step 7: Complete historic subscriber code

	Message Store
	In-memory Message Store
	SQL Message Store

	Persisting Messages

	Connecting Up
	Step 1: Opening an eBus service
	Step 2: Opening an eBus client connection
	Step 3: eBus network configuration
	Step 4: Address filter
	Step 5: eBus configuration file
	Step 6: Building Servers and Connections.
	Step 7: Connection notification
	Pausing Connections
	Multicast Connections
	Multicast JSON Configuration
	Building eBus Multicast Connections

	Monitoring eBus Connections

	Dispatcher
	eBus Clients Are Single-Threaded
	Active and Hybrid Objects

	Dispatcher now comes in four (!) flavors
	Combining eBus Dispatcher and non-eBus Threads
	Special Dispatchers
	Monitoring Dispatchers
	Dispatcher Configuration
	Programmatic Dispatcher Configuration

	Gentlemen, start your objects
	Pinning Application Objects to a Dispatcher
	Registration Gotchas

	State of the Union: eBus and SMC
	Calculator State Machine
	Integrating the FSM into Calculator
	Integrating the FSM into eBus

	Going Mobile
	Time, Gentlemen!
	Creating an EScheduledExecutor
	Programmatic eBus Scheduler Creation
	JSON eBus Scheduler Creation

	Keeping an Eye on Things
	Application Monitoring
	Instrumenting EObjects
	Monitoring eBus applications

	Appendices
	Appendix A: Binary message layout
	Appendix B: eBus connection protocol
	Appendix C: eBus protocol stack
	Appendix D: eBus Network Programming
	Defining Selectors
	Dynamic Selector Definition
	Different Selectors for Different Channels
	Selector Thread Affinity
	AsyncChannel Types

	Appendix E: Configuring Thread Affinity

	Glossary
	Index
	Definition
	Condition
	Dispatcher
	EClient
	Feed Scope
	Message Key
	Notification
	Reply
	Request

